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Abstract

The Player project is an open-source effort providing a control interface specification and
software framework for abstracting robot hardware. This research presents five exploits that
compromise vulnerabilities in Player’s command and control protocol. The attacks exploit
weaknesses in the ARP, IP, TCP and Player protocols to compromise the confidentially,
integrity, and availability of communication between a Player client and server. The attacks
assume a laptop is connected in promiscuous mode to the same Ethernet hub as the client and
server in order to sniff all network traffic between them. This work also demonstrates that
Internet Protocol Security (IPsec) is capable of mitigating the vulnerabilities discovered in
Player’s command and control protocol. Experimental results show that all five exploits are
successful when Player communication is unprotected but are defeated when IPsec
Authentication Header (AH) and Encapsulating Security Protocol (ESP) are deployed together
(AH+ESP) in transport mode. A cost function is defined to synthesize three distinct scalar
costs (exploit success, CPU utilization, and network load) into a single scalar output that can be
used to compare the different defense protocols provided by IPsec. Results from this cost
function show that in a scenario when exploits are likely, IPsec AH+ESP is the preferred
defense protocol because of its relatively low CPU and network overhead and ability to defeat
the exploits implemented in this research by authenticating and encrypting the transport and
application layers. Performance data reveals that for the Overo Earth embedded system
running a TI OMAP3530 processor at 720MHz, IPsec AH+ESP increases CPU utilization by

0.52% and the network load by 22.9Kbps (64.3% increase).

v
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VULNERABILITY ANALYSIS OF THE PLAYER COMMAND AND
CONTROL PROTOCOL

I. Introduction

Remotely piloted vehicles have transformed the way the U.S. military conducts
operations. The advantages of such systems to perform dull, dirty, or dangerous missions are
also being realized in the civilian sector. For these systems to consistently perform at their
maximum potential, security must be considered when designing the communication protocols
that define how these systems are remotely controlled. If compromised, these systems could
lead to the loss of confidential information or the loss of control of the system. In the worst-
case, the command and control system could be completely taken over by a malicious adversary,
which could lead to the loss of technology or life. Because of these potential consequences,

analysis of the security of the communication protocols used to remotely pilot vehicles is vital.

Player is an open-source command and control application that provides interfaces to
remotely control and read sensor data from a mobile robot [GSV00]. Because it is open-source
and widely used in the academic realm, it is an appropriate candidate for studying the security
of command and control protocols of remotely piloted vehicles. Furthermore, the Player
community has not published works discussing the security of Player, thus there is a need for

work in this area.

1.1 Objectives
This thesis focuses on one part of the overall security concerns for remotely piloted
vehicles: vulnerability analysis of Player’s command and control protocol. The research goals of

this thesis are:

1) Demonstrate the vulnerability of the Player protocol to network attacks;

2) Demonstrate the effectiveness of [Psec to secure the Player protocol;
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3) Quantify the cost of IPsec to secure the Player protocol.

It is hypothesized that vulnerabilities in Player’s command and control protocol will be
discovered that allow exploits to compromise communication. Additionally, it is expected that
IPsec will mitigate these vulnerabilities and allow for secure Player command and control.
Finally, it is hypothesized that the system will consume additional resources when employing

IPsec but that the system will maintain proper functionality.

1.2 Implications

By analyzing Player’s vulnerability to attack, the community is made aware of any
discovered weaknesses in the Player protocol and possible countermeasures that ensure secure
deployment. The methodology outlined in this thesis can be used to analyze the security of
other Player-like command and control applications. Because there is concern that mobile
devices do not possess the necessary resources to protect communication, this research
determines if modern mobile devices have sufficient resources to protect Player-like command

and control with IPsec.

1.3 Thesis Overview

Chapter 2 provides a literature review of network security for client-server applications
and a detailed description of the Player application. Related works in the field of performance
analysis of security protocols are also included. Chapter 3 defines the research goals of this
thesis and the methodology used to accomplish these goals. Chapter 4 presents the results and
analysis of the data collected in this thesis. Finally, Chapter 5 concludes by summarizing the

results and significance of this work and identifying areas for future work.
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II. Literature Review

2.1 Chapter Overview

This chapter provides a review of the foundational literature for the research detailed in
this thesis. The reader should be familiar with computer networking and the Internet stack.
The concepts described in this chapter are implemented and extended in this thesis to
accomplish the research goals.

Section 2.2 defines network security and the security model used in this thesis. Section
2.3 provides background into the current mechanisms used to secure client-server applications.
Section 2.4 describes the Player project and the protocol it uses to communicate. Section 2.5
details the architecture of the physical robotic platform selected for this research. Section 2.6
reviews published network attacks against client-server applications as well as techniques that
have been developed to mitigate these attacks. Section 2.7 discusses the results from works
related to the field of mobile security. Section 2.8 details the novelty of this research, and

Section 2.9 provides a summary of this chapter.

2.2 Network Security Fundamentals

This section defines the term network security within the context of this thesis. The
cryptographic community often uses the variable names Alice and Bob to represent two parties
who wish to communicate securely. Because security is difficult to define without an adversary
with ill intent, the community uses the character, Eve (short for eavesdrop), to represent an
adversary who can read all messages that Alice and Bob communicate to each other. The
malicious character, Mallory, is not only capable of reading all messages communicated between
Alice and Bob, but can additionally modify these messages, replay old messages, or create new
messages. This illustration casts network security as the scenario in which Alice and Bob wish

to communicate securely even in the presence of Mallory. Figure 1 depicts an example scenario
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in which Mallory impersonates Alice and Bob by sending messages that falsely claim to originate

from either Alice or Bob.

0 pryer)
Qu

)

\

Alice Mallory Bob

Figure 1. Mallory Impersonates Alice and Bob.

“Hi, I'm Alice.”

The confidentiality, integrity, and availability (CIA) security model selected for this
research decomposes security into three principles. Confidentiality is the principle that
knowledge of the communication between Alice and Bob is restricted to only Alice and Bob.
Integrity includes two parts, data integrity and origin integrity. Data integrity stipulates that
any modification Mallory makes to a message is detectable. Origin integrity, also called
authentication, is the principle that Alice can verify that messages that claim to have originated
from Bob could only have originated from Bob. Availability is the principle that Alice and Bob
are able to send each other messages when needed and cannot be blocked by Mallory’s actions

[Bhi96].

2.3 Client-Server Application Security

This section describes the most widely used mechanisms for protecting the principles of
the CIA security model for client-server applications that communicate over the Internet. To
do so, the client-server architecture is first defined, then popular security protocols that operate

in various layers in the Internet stack are evaluated. Understanding how these security
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protocols protect client-server applications is crucial to the selection of a subset of these

defensive protocols for study in Chapter 3.

2.3.1 Client-Server Architecture. The client-server architecture leverages cooperative
processing capabilities through the use of networks to split the processing performed by the
client and the server, while still presenting a single logical service to the user. A server is a
process that exists to provide services to one or more clients [GuT95|. A client is a process that
requests and receives information from a server. Servers do not initiate contact with clients but
instead listen for requests from clients. Once a client makes a request, the server processes and
services the request. When the data is returned to the client, the client operates on the data
and presents it to the application, which may include a graphical user interface (GUI) for user
interaction [GuT95|. Mobile client-server computing is an extension of this architecture for
mobile environments. What distinguishes it from classical, fixed-connection, computing is the

fact that clients can change locations and typically have higher resource constraints [JHE99].

2.3.2 Security at the Application Layer. Pretty Good Privacy (PGP) provides
cryptographic confidentiality and authentication for data files and email messages [Cal07].
Confidentiality is provided using a combination of public-key and symmetric-key encryption in
which symmetric session keys are generated using public-key material. Authentication is
handled differently in PGP than in other Public Key Infrastructures (PKI). Rather than a top-
down certificate authority, used in SSL, PGP uses a bottom-up web of trust model. In this
model, users exchange and accumulate keys with other users they designate as trusted entities
[Cal07]. Keys signed by trusted entities or signed by multiple partially trusted entities are
deemed legitimate. Keys signed by unknown entities or by a single partially trusted entity are
not deemed legitimate. By using a decentralized approach, PGP has the advantage of being

resilient to single-node failure but scales poorly [Ger00].
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Secure Shell (SSH) is a security protocol that creates an authenticated, encrypted
channel between two networked systems. SSH is built on a client-server architecture for which
the server is responsible for accepting or rejecting incoming connections to the host system.
Users run SSH client programs to authenticate with, and make requests of, the SSH server
[Ope09]. SSH provides authentication, encryption, and integrity through a variety of encryption
algorithms, hashing algorithms, and authentication options. SSH differs from PGP in that PGP

typically secures a single file or email at a time, while SSH secures an ongoing session [BSB05|.

Secure Sockets Layer (SSL) was developed by Netscape Communication Corporation to
provide security and privacy to Internet communication [Rsall]. While the protocol is
application-independent, it is optimized for HT'TP. SSL provides encryption, client-server
authentication, and message authentication codes (MAC) at the application layer. The SSL
handshake is made up of a server authentication phase and an optional client authentication
phase. The most recent implementation of SSL is Transport Layer Security (TLS), version 1.2.
TLS 1.2 adds support for the Advanced Encryption Standard (AES) as well as the Secure Hash
Algorithm 2 (SHA-2) family. Rather than the bottom-up model used in PGP, SSL employs a
top-down certificate authority (CA) to authenticate clients and servers. A certificate authority

is a trusted third party that issues digital certificates that bind a name to a public-key [Die08|.

2.3.3 Security at the Transport Layer. There are currently no widely-adopted security
protocols deployed for the transport layer of the Internet stack. Obfuscated TCP (ObsTCP) is
a rejected draft for the Internet Engineering Task Force (IETF) that proposed opportunistic
encryption at the transport layer. Encryption in ObsTCP is opportunistic because if either side
does not support ObsTCP, the connection falls back to normal, unencrypted TCP. In
comparison to SSL, ObsTCP is designed to provide faster encryption without protection from a

man-in-the-middle (MITM) attack. Because it operates at the transport layer, any application
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layer protocol can utilize ObsTCP without modification. After the IETF rejected the proposal,

the draft was removed from the IETF and development of the project ceased [Obf12].

Tcperypt is a recently proposed transport layer security protocol that provides
opportunistic encryption and optional authentication. It is similar to the failed ObsTCP IETF
draft except that it also provides hooks for applications to provide authentication, which protect
against MITM attacks. Because tcperypt operates in the transport layer, it has the advantage
over application layer security protocols that it can authenticate the TCP header and be used to
protect any application with less modification [BHH10]. Tcperypt is currently under
development by a group of researchers at Stanford University, lead by Andrea Bittau [Bit12].

The IETF is currently reviewing a draft of the tcperypt protocol [BBH11].

2.3.4 Security at the Network Layer. Internet Protocol Security (IPsec) is a network
layer security protocol designed to mitigate many of the security weaknesses inherent to the
Internet Protocol (IP). These weaknesses are used in practice to perform IP spoofing, session
hijacking, man-in-the-middle (MITM), and denial of service (DoS) attacks. IPsec is designed to
complement upper-layer protocols (e.g., TCP) such that they do not have to be modified in
order to employ its protections. Security associations (SA) are used by IPsec to define the
security parameters that allow two hosts to communicate securely. A SA is uniquely identified

by an IP destination address, Security Parameter Index (SPI), and a security protocol [KimO7].

As shown in Figure 2, [Psec operates in two modes: transport and tunnel. In transport
mode, only the payload (typically a TCP segment) is protected. In tunnel mode, the entire IP
datagram is protected and encapsulated in a new IP packet. Tunnel mode is often used to

create virtual private networks (VPN).
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Transport Mode el AH [ TeP Daita

S

Original Packet IP | TCP| Data

Tunnel Mode IP | AH | IP |TCP| Data

New IP Header

Some Fields

! Authenticated
Authenticated v *

Figure 2. Comparison of IPsec AH Transport and Tunnel Modes [Ips11].

IPsec defines two protocols, the Authentication Header (AH) protocol, which provides
authentication and integrity and the Encapsulating Security Payload (ESP) protocol, which
provides encryption and optional authentication and integrity [KeS05|. AH inserts a header
between the network and transport layers to provide authentication and integrity to most of the
IP header, as well as all of the transport and application layers. AH uses a cryptographic hash-
based message authentication code (HMAC) with a secret key to provide authentication and
integrity [Ken05]. Figure 3 highlights the fields of an IP packet that are protected by AH.
MD5 and SHA-1 are the typical HMAC’s used by IPsec implementations, though both have
proven weaknesses that make them undesirable for long-term use [BIC06, WYYO05]. SHA-2, a
family of HMACs that succeed SHA-1, currently has no published weaknesses threatening its
secure usage. For this reason, the National Institute of Standards (NIST) recommends the use

of SHA-2 until the results of the SHA-3 competition are finalized in late 2012 [Nis08].
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Figure 3. IPsec AH in Transport Mode [Fri05]

ESP, the second protocol defined in IPsec, inserts a small header between the network
and transport layers to encapsulate and encrypt the IP payload using a secret key, as shown in
Figure 4 [Ken05a]. The most common encryption algorithms used are DES, 3DES and AES,
though DES is considered insecure because of its small key size [Rsallal. Figure 4 highlights
the fields that are encrypted by ESP in transport mode and outlines the optional authentication

of the ESP header and payload.
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Figure 4. IPsec ESP in Transport Mode [Fri05]

Bellovin demonstrates chosen plaintext, fragmentation, and session hijacking attacks
against ESP when authentication is not used [Bel96]. Bellovin’s chosen plaintext attack requires
2% packets, which he accomplishes in under 10 minutes on 100BaseT Ethernet. Paterson and
Yau demonstrate several additional real-world attacks against the Linux kernel using ESP when
authentication is not used [PaYO06|. Results from their work show their attack implementation
requires on average 2'° packets and executes in under 3 minutes. Both papers conclude that
encryption without authentication is dangerous and should not be used because it is still

possible for an attacker to modify and inject data into the encrypted channel without detection.
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2.4 Player Project

This section describes the purpose and implementation of Player, the command and
control application studied in this research. Development of the experiments detailed in
Chapter 3 relies heavily on a thorough understanding of how Player functions and
communicates.

2.4.1 Player. The Player project is an open-source effort providing a control interface
specification and software framework for abstracting robot hardware. The project name derives
from Shakespeare’s As You Like It: “All the world’s a stage, And all the men and women merely
players” [GSV00]. Player provides simple and complete control over the physical sensors and
actuators of a mobile agent. Player can handle virtually any number of clients allowing for a
network of robots to communicate and cooperate. It is written to be language and platform

independent, though client plug-ins currently only exist for C++-, Java, and Python.

Player is designed as a client-server architecture in which robots running Player server
receive commands and send status information to controlling Player clients. Robots that
participate in the command and control of other robots can accomplish this by running both a
Player client and a Player server locally. An example scenario where multiple Player clients
and servers are used is shown in Figure 5 [GVS01]. In this scenario, Player servers (P) running
on robots and other sensing devices send data to Player clients (C) that map, log, and
graphically display this data. Certain robots run Player clients locally, allowing them to process

data from other servers to make determinations about their surroundings.
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Figure 5. Scenario of Networked Player Servers (P) and Clients (C) [GVSO01]

A Player server listens on TCP port 6665 for incoming client connections [GSV00]. The
server provides interfaces to clients through a series of abstractions depicted in Figure 6.
Available interfaces depend on the hardware that is present in the robot and include services for
controlling two-dimensional (2D) position and robot peripherals such as sonar or grippers.
Clients subscribe to one or more of these interfaces, allowing them to issue commands to and

receive data from the robot.

Your Code
ROBOT
{ Pro;(ies ]
Player
I Server
[ Drivers
[ Hardware ]

Figure 6. Player Server Architecture [Owel0)]

2.4.2 Stage. Stage is a 2D robot simulation environment built to interface with Player
and demonstrate robot behavior. The project name is also derived from the same line in
Shakespeare’s As You Like It [GSV00|. Stage virtualizes the physical robot from Player (Figure

7) so that a Player robot can be studied in a simulated environment. It interfaces with Player
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the same way a physical robot does by receiving commands and moving a simulated robot. The

simulated robot passes sensor data back from its virtual environment to the Player client.

| Your Code |

s

- 1
[ roie ) 22
v

/[ Drivers ];

F

Figure 7. Stage Architecture [Owel0)]

2.4.3 Player Network Protocol. The Player protocol defines how messages between the
client and server are formatted in order to access the interfaces that Player supports.
Understanding the protocol is difficult because the documentation on the official website is both
outdated and incomplete. The official manual states: “Todo: -More verbose documentation on
this library, including the protocol” [Plall]. Because the protocol details are essential to this

research, the following sections outline a design recovery of the Player protocol used in v3.0.2.

2.4.3.1 XDR. Player uses the IETF standard, External Data Representation
(XDR), to encode messages that are passed between the client and server. XDR is well-
documented so understanding the encoding of a message is straightforward once the underlying
structures have been determined. All data types are encoded using 4-byte alignment (e.g., 8-bit
characters are padded to fit a 4-byte cell) and transmitted in network order (big-endian)

[Fre00]. As an example, the encoding for the IEEE single-precision floating point number is

pictured in Figure 8.
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2.4.3.2 Player Message Header. Any network attack against Player needs the

ability to interpret the message header. Every XDR-encoded Player message begins with a 40

byte, fixed-length header, an example of which is shown in Table 1. The header structure is

determined using both static analysis of the source code and dynamic packet examination of a

Player client v3.0.2 communicating with Stage to obtain the raw data shown in the 4-byte XDR

cells column. Enumeration values in the first column are taken from the Player source code.

The first four XDR cells (host, robot, interface, index) address the particular server and

interface for which the message is destined. The following two XDR cells (type, subtype)

specify the contents of the message payload. A timestamp is included to synchronize the client

and server. The sequence number field is no longer used because Player employs TCP for its

transport service. Finally, the size field includes the length of the message payload.

Table 1. Example Player Header

4-byte XDR cells Type Name Value Description

/\ '_qg =100 00 00 00 uint32_t host | 0 server address (unused by client)
5 15 =00 01 1A 09 | uint32 t robot | 6665 robot identifier
?% . %F% E 00 00 00 04 uintle t interface | 4 PLAYER POSITION2D CODE

< |8 = - - -
f) 5 | & = (00 00 00 00 uintl6 t index | 0 device identifier
E 2 = /00 00 00 02 uint8 _t type | 2 PLAYER_ MSGTYPE_ CMD
- = /00 00 00 oO1 uint8 t subtype | 1 PLAYER POSITION2D CMD _ VEL
~ ) D - - - -
I = = |41 D3 77 40 . ) )
- | & S double | timestamp | 1.31E09 | time since epoch
= = |2F 52 DO 9E
= = /00 00 00 00 uint8 t seq | 0 transport-specific (unused)
v = /00 00 00 1C uint32 t size | 28 length of body (bytes)
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2.4.3.3 Player Message Payload. For messages that include commands or data,
Player appends a variable-length payload, which is identified in the header. These payloads are
also XDR-encoded and defined by the interface they represent (e.g., Position2D). Table 2 shows
an example payload for a Position2D command. The first six XDR cells (vx, vy, va) encode the
velocity commands as double precision floating point values. The final XDR cell (state)

specifies the motor state (on, off).

Table 2. Example Player Command Payload

4-byte XDR cells Type | Name Value Description
N =100 00 00 00
> | 8 E double VX 0.0000 | velocity on the X-axis
21T | [ =2]00 00 00 00
2 | P
o [ 2 =100 00 00 00
ES G g double vy 0.0000 | velocity on the Y-axis
2 lZ" €[=]00 00 00 00
“|& | 2| % |BF FO C1 52
I Ll = double va -1.0272 | angular velocity
=R = [38 2D 73 65
3
v & =100 00 00 O1 uint8 t | state 1 | motor state

2.5 iRobot Create Platform

The iRobot Create is an educational robot platform designed for educators, students,
and developers [Iroll]|. iRobot provides an interface specification that allows developers to send
commands to robot motors and read data from sensors onboard the Create. Player server
includes a driver that implements this interface specification. In Figure 9, a Player client
connects via WIFI to the Player server that is executed on the Overo Earth embedded system.
The server translates the client commands through the Create driver and transmits them via an
RS232 serial connection to the Create microcontroller. The Create microcontroller performs the

hardware level control and returns requested data to the Player server, which forwards it back

to the client.
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Figure 9. iRobot Create Architecture
2.6 Network Attacks
This section provides an overview of some common network attacks that compromise the
CIA security model described in Section 2.2. The naming conventions discussed in Section 2.2
are used in which Alice and Bob are legitimate parties wishing to communicate securely and
Mallory is a malicious attacker who tries to compromise their communication. A thorough
understanding of these attacks is vital to this research because a subset of the attacks described

in this section are implemented in the experiments described in Chapter 3.

2.6.1 Attacks on Confidentiality. Alice and Bob wish to communicate privately over an
insecure network. Mallory can read any plaintext sent over the insecure network and thus
compromise confidentiality. This type of attack is called eavesdropping. To prevent
eavesdropping, Alice and Bob can encrypt their communication such that Mallory can only read
incomprehensible ciphertext that is transmitted across the network. Encryption techniques fall

into two categories: symmetric-key and public-key. In symmetric-key algorithms, Alice and Bob
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share encryption and decryption keys. Modern examples include the Data Encryption Standard
(DES) and the Advanced Encryption Standard (AES). In public-key algorithms, Bob’s
encryption public-key is available to all parties, but the corresponding decryption private-key is
known only to Bob. Alice uses Bob’s public-key to encrypt her message and only Bob can
decrypt it because he is the only one with access to the private-key [TrW06]. RSA is a modern

example of a public-key algorithm.

2.6.2 Attacks on Integrity. Alice and Bob wish to communicate while ensuring that they
are in fact communicating with each other (authentication) and that their messages have not
been altered (data integrity). Mallory can launch a class of attack called address spoofing,
described by Heberlein and Bishop, in which Mallory uses false IP addresses to establish forged

communication with Bob [HeB96|.

Another class of integrity compromise is the man-in-the-middle (MITM) attack, in which
Alice initiates communication with whom she thinks is Bob, but who is actually Mallory.
Mallory forwards communication (potentially modified) to and from Alice and Bob who are
unaware of Mallory’s actions. MITM attacks can be achieved when Mallory is on Alice or Bob’s
subnet using an attack called ARP cache poisoning [Wha01l, Phi07]. In this MITM attack,
Mallory sends gratuitous ARP responses to remap Alice and Bob’s IP addresses to her MAC
address. Because of this, Alice and Bob unknowingly send messages meant for each other’s

MAC addresses to Mallory’s MAC address instead.

If Mallory is on the same Ethernet switch as Alice, she can perform another MITM
attack called port stealing [OrV03|. In this attack, Mallory floods her own Ethernet port with
packets containing the MAC address of the gateway router. When Alice sends a message to her
gateway router, the switch will incorrectly forward it to Mallory instead because the switch

associates the gateway router’s MAC address with Mallory’s Ethernet port.
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TCP connection hijacking is an active MITM attack that exploits TCP sequence
numbers to gain control of an ongoing TCP connection [Jon95|. In this attack, Mallory creates
a desynchronized state between Alice and Bob’s sequence numbers, preventing them from
exchanging data directly. Mallory captures the corrupt messages to maliciously modify the
application layer and then corrects the sequence numbers so Alice and Bob will accept the
modifications. Joncheray proposes two methods for creating the desynchronized state, early
desynchronization and null data desynchronization [Jon95]. Early desynchronization is achieved
when Mallory resets Alice and Bob’s initial TCP connection and then quickly establishes a new
malicious connection with one of them. Null data desynchronization involves Mallory watching
an ongoing TCP connection and then injecting a large amount of null data with correctly
calculated next sequence numbers. One negative side effect of TCP connection hijacking is that
it generates an ACK storm when the connection becomes flooded with desynchronized ACK
packets. The ACK storm can potentially overwhelm the attacker’s ability to capture and

retransmit packets.

The MITM attacks described above can be mitigated by authenticating the messages
Alice and Bob send to one another. Hash functions map a large variable-length collection of
messages into a small fixed-length set of message digests. These are typically used for error
detection. A cryptographic hash function provides authentication in addition to integrity
through the use of public-key cryptography. Alice first hashes her message to produce a
message digest, then encrypts the digest with her private-key to produce a digital signature
[BSP95|. Message authentication codes (MAC) work similarly to cryptographic hash functions
except that rather than using public-key cryptography, Alice’s message digest is encrypted with

a symmetric-key she shares with Bob [KuR10a].
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By capturing and storing messages sent between Alice and Bob, Mallory can launch a
third class of integrity attack: the replay attack. In this attack, Mallory replays old messages
which she might not even be able to decipher because of encryption or modify because of
authentication protection [KuR10]. By replaying a message, Mallory could impersonate Alice
and compel Bob to repeat some action, resulting in negative consequences. Using a timestamp,
nonce (one time use number), or sequence number as input to a cryptographic hash function

defeats replay attacks [KuR10a].

2.6.3 Attacks on Availability. Alice and Bob wish to have the ability to communicate
when needed. Mallory can launch a class of attacks called denial-of-service (DoS) to disrupt
Alice and Bob’s ability to communicate effectively. Mallory achieves this effect by sending
messages to Bob that interfere with his normal operation. Typically this means sending a vast
number of messages to overload Bob’s resources or the network infrastructure that he uses to
communicate. A distributed-denial-of-service (DDoS) attack works in the same way, except

Mallory coordinates many attacking machines to amplify the resulting damage [MDRO5|.

SYN flooding is a specific DoS attack in which Mallory creates a large amount of half
open TCP connections with Bob [Cer98]. Each time a connection is opened, Bob allocates
resources for it. Since Mallory never closes these connections, Bob eventually runs out of
resources to allocate for new connections coming from either Mallory or Alice. SYN cookies
mitigate SYN flooding by using particular choices of initial TCP sequence numbers and waiting
to commit the full amount of resources for a connection until the client has completed the TCP

handshake [Berll].

Mallory exploits the network layer with Smurf attacks by sending a broadcast ICMP
echo request into a susceptible network with Bob’s address as the return address [Cer98|. The

Smurf network is used to amplify the effect by using many systems which unwittingly flood Bob
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with echo replies, disrupting his infrastructure. Chau describes that the first step in defending
against Smurf attacks is to prevent one’s own network from being a Smurf that is used to attack
other networks. Configure the router to block all outbound packets that indicate a source
address not contained within the routers internal subnet. In addition, disallow incoming

broadcast ICMP packets [Cha04].

TCP connection flooding expands upon the SYN flooding attack by finishing the three-
way TCP handshake. Mallory floods Bob with forged TCP SYN packets and listens for Bob’s
SYN-ACK response. Mallory then completes the connection by replying with an ACK using
Bob’s SYN-ACK sequence number. A popular version of this attack is the HTTP-GET flood
attack [YIS07]. Because the malicious packets have legitimate TCP headers and HTTP
payloads, they are difficult to distinguish from legitimate requests and thus more difficult to
filter out effectively. Yatagai et al. propose behavioral algorithms to detect and deny malicious
requests that complete the TCP handshake [YIS07]. In another mitigation technique, client
puzzles, a server discerns a client’s commitment to making a connection by utilizing some of the
client’s resources. A puzzle is defined as a task that is difficult to solve by the client but easy to
verify by the server. Only after the client returns the solved puzzle will the server allocate
resources to the connection. For this strategy to be effective, the client must always commit

more resources than the server [ANLO1].

TCP reset allows Mallory to close a live connection between Alice and Bob by injecting
a spoofed TCP header into their connection with the reset bit set. Watson’s results show that
practical attacks are possible on the order of 10 seconds when the attacker has the capability to
transmit 4370 packets per second [Wat04]. To defeat TCP reset attacks, Watson suggests the
use of the optional TCP MD5 header to authenticate each packet and its TCP header which

contains the reset flag. Malicious packets that fail the MD5 authentication are silently dropped.
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Watson also recommends that the TCP window size be carefully tuned in order to make it as
small as possible, while still maintaining reliable and timely communication. A smaller TCP
window size forces the attacker to expend more resources to close the connection because the

probability that the reset packet correctly falls into the window is reduced [Wat04].

2.6.4 Network Attack Tools. To demonstrate exploits that compromise the Player
protocol, several common networking tools are extended by this research. Wireshark is a
network protocol analyzer that allows a user to capture and interactively browse computer
network traffic. Because it is written in C/C++, it can be compiled on all popular operating
systems and supports a large number of protocols out of the box [Wirll]. A custom Wireshark
dissector that parses the Player protocol described in Section 2.4.3 is created for this research

and included in Appendix A.

Scapy is an interactive packet manipulation program developed as a Python module.
The core features it provides are the ability to capture and dissect packets and the ability to
forge and transmit packets on the wire. Scapy is designed to handle scanning, trace routing,
probing, and network attacks. By including hooks to bind new protocols, Scapy is extendable
by the user [Scall|. Because it is written in Python, Scapy code runs on all popular operating
systems and supports popular protocols. The Player protocol described in Section 2.4.3 and the

network attacks selected in Section 3.9 are implemented in Scapy.
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2.7 Related Works

Caldera et al. extend Network Simulator 2 (NS2) to measure the performance penalties
of IPsec and Internet Key Exchange (IKE) on the Mobile IP protocol [CDN00]. The metrics the
authors choose are network throughput and delay. Caldera et al. investigate three scenarios
involving different combinations of AH and ESP in transport and tunnel modes. Results show
that IPsec does not have a significant penalty on throughput relative to the erratic effects
introduced by the physical wireless link. Thus for systems communicating wirelessly, Caldera et

al. predict that the performance impacts of IPsec are negligible.

Argyroudis et al. investigate the performance impacts of using strong cryptographic
protocols (SSL and IPsec) on handheld devices [AVT04|. Their platform consists of an HP
iPAQ H3630 with a 206MHz StrongARM processor and 32MB of RAM running Windows CE
Pocket PC 2002. Results show that both cryptographic protocols introduce measurable latency
but are realistically feasible for securing casual HT'TP traffic. However, the authors use
significantly slower hardware than is commercially available for similar modern devices, so their

conclusions may be outdated.

Elkeelany et al. perform analytical studies to estimate the space and time performance
impacts of IPsec AH and ESP when operating with three specific cryptographic algorithms:
MD5, SHA-1, and 3DES [EMS02]. In terms of space complexity, results show AH and ESP add
an additional 24 and 22 bytes respectively to each IP packet. Their results show that for a

500MIPS machine MD5 can be performed at 340Mbps, SHA-1 at 180Mbps and 3DES at 4Mbps.

2.8 Research Contributions

This research extends work in the area of mobile client-server security. The literature
produced by the Player community does not consider the security of the system, an oversight
this thesis addresses. This research implements several well-known network attacks against
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Player and records the results. Given that robots have clear physical consequences (e.g., safety
concerns), it is recommended that the Player community consider how the network protocol
could be designed more securely. The performance analysis cited by Argyroudis et al. in Section
2.7 is several years old; this analysis is updated using modern technology here. This research
not only quantifies the cost of system resources incurred by IPsec, but also synthesizes this with
the security cost associated with an unprotected system. Results are supported with measured
experimental data, which complement previous simulated and calculated works cited in Section

2.7 by Caldera et al. and Elkeelany et al.

2.9 Literature Review Summary

This chapter provides the background in network security, security protocols for client-
server applications, the Player project, and network attacks necessary to understand this
research. The methodology described in Chapter 3 builds upon the works cited in this literature

review to accomplish the research goals of this thesis.
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II1. Methodology
3.1 Chapter Overview
This chapter provides the methodology for analyzing the vulnerability of Player’s
command and control protocol. The experiments described in this chapter provide data to

answer the research questions of this thesis. Analysis of this data is presented in Chapter 4.

Section 3.2 defines the research goals of this thesis. Section 3.3 describes the approach
for accomplishing these research goals. Section 3.4 provides the system boundaries that frame
the System Under Test (SUT). Section 3.5 lists the services that the SUT provides. Section 3.6
defines the workload that the SUT performs. Section 3.7 defines the metrics by which the
performance of the SUT is measured. Section 3.8 defines the system and workload parameters
in fine detail so that this work can be replicated. Section 3.9 lists the factors that are expected
to affect system performance. Section 3.10 describes the evaluation technique that is used to
test the research hypotheses. Section 3.11 provides the experimental design for this work.

Finally, Section 3.12 provides a summary for the chapter.

3.2 Research Goals
The research goals of this thesis are threefold:
1) Demonstrate the vulnerability of the Player protocol to network attacks;
2) Demonstrate the effectiveness of IPsec to secure the Player protocol;

3) Quantify the cost of IPsec to secure the Player protocol.

Because the robot is an embedded device, it is resource constrained in both computing
capabilities and energy storage. In addition, a mobile robot uses a wireless network to
communicate, which is inherently bandwidth-limited. Supposing that IPsec can be shown to be
effective at protecting Player, the overhead it introduces could exceed the capabilities of some

robot platforms. Therefore, the cost for research goal 3 is defined as the additional computing,
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energy, and network bandwidth resources a robot running Player must expend to protect its

command and control communication with IPsec.

This research also determines the performance impact of running IPsec while under
attack. An important question to consider is which types of command and control exploits are
mitigated by the different IPsec protocols? What is the performance impact that different [Psec
protocols and exploits cause? At a tactical level, this research determines the performance cost
of IPsec to defeat particular exploits, as certain IPsec protocols protect different aspects of the

CIA security model, described in Section 2.2.

It is hypothesized that exploits against confidentiality, integrity, and availability will be
successful in compromising an unprotected Player system. Because IPsec AH authenticates the
IP payload, it will defeat attacks against integrity that attempt to inject forged data. IPsec
ESP will defeat attacks against confidentiality by encrypting the IP payload, making it
infeasible for an attack to read the plaintext. By both authenticating and encrypting the IP
payload, IPsec AH+ESP will defeat attacks against both integrity and confidentiality. No IPsec
protocol is expected to be effective against availability attacks because IPsec has no mechanism
to prevent an attacker from consuming shared network resources. Using IPsec will measurably
increase the CPU utilization, energy consumption, and network traffic of the embedded system
in the robot because of the extra computational steps needed to perform authentication and
encryption algorithms and the addition of the IPsec network headers. Of the two IPsec
protocols, AH is expected to consume fewer resources than ESP as Dai finds that with the same
key size, SHA-2 consumed fewer cycles per byte than AES [Dai09]. IPsec AH-+ESP is expected

to consume the most resources because both the AH and ESP protocols are applied.

Attacks targeting confidentiality are not expected to affect CPU utilization, energy

consumption, or network load, since they are completely passive. Attacks against integrity and

25

www.manharaa.com




availability are expected to increase CPU utilization and network load because the attacker will

introduce additional packets into the network that will be processed.

3.3 Approach

To accomplish the aforementioned research goals, vulnerabilities in the Player protocol
that compromise confidentiality, integrity, or availability are identified. An exploit based on
each vulnerability is written to compromise Player communication. A repeatable set of
commands a client sends to a robot is defined for each experiment in Section 3.10.3. While the
client transmits these baseline commands, the system is subjected to a specific exploit while
operating using a specific [Psec protocol. Exploits that compromise confidentiality are
successful if they correctly determine the position of the robot. An exploit that successfully
injects false position data into the Player connection successfully compromises integrity.
Exploits that compromise availability are successful if they terminate the connection between
the client and the robot. The performance of the system under these different conditions is

measured to quantify the effects of defense protocols and exploits.

3.4 System Boundaries

The System Under Test (SUT) in this research is the Player Defense System (PDS).
PDS (Figure 10) consists of Alice (Player client), Bob (Player server), Mallory (malicious
attacker), a defense protocol, and the network over which communication occurs. Input to the
system is legitimate position commands and position data-requests from the client (Alice) as
well as malicious exploits from the attacker (Mallory). Output from the system is both the

physical movement of the server (Bob) and position data packets sent in response.

26

www.manharaa.com




Player Defense System v

Defense Protocol
(Component Under
Test)

Network

Input (Workload)

Output >

1. Physical movement of Bob
2. Position data packet sent
by Bob

1. Position command
2. Position data request
3. Exploit

Figure 10. Player Defense System

The following are components of the PDS:

o Alice— Alice is a computer that runs the Player client. She issues position
commands over the network to Bob and listens for responses from Bob that either
acknowledge her commands or contain Bob’s position. Alice must agree with Bob on
the defense protocol to properly communicate.

e Bob— Bob is a robot with an embedded system that runs the Player server.
Because he is embedded, Bob is more resource constrained than either Alice or
Mallory. Bob listens for position commands, acknowledges the commands, and
performs hardware actions. If Bob receives a data-request, he replies with a packet
containing his current position.

e Mallory— Mallory is a computer that acts as a malicious attacker. Mallory has the
ability to intercept network traffic as well as modify and create messages of her own.
She launches exploits to violate the confidentiality, integrity, or availability of the
command and control communication between Alice and Bob. Mallory has no

knowledge of any shared secret between Alice and Bob that may be used in the
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defense protocol. Mallory does not attempt any brute force attacks to determine
authentication or encryption keys.

e Network— The network is a communication channel that supports the coordination
of multiple end systems. It provides no confidentiality, integrity, or authentication
to the messages sent by end systems. It is a shared medium, meaning systems
contend for use of the channel and any messages can be read by all systems.

e Defense Protocol— The defense protocol is the Component Under Test (CUT). It is

a security mechanism agreed to by both Alice and Bob in which they use a shared

secret to protect one or more principles of the CIA security model.

While Player has been developed to support multiple client and server agents, this
research limits the scope to a single client and server to focus on analyzing the vulnerabilities in
the Player protocol. Player also supports many different robot services other than 2-
dimensional position, but those are also beyond the scope of this research. Exploits employed
by Mallory are limited to the following network protocols: Player, TCP, IP, ARP, and Ethernet.
That is, Mallory does not attempt to exploit a vulnerability in the Player application itself to
execute arbitrary instructions on the end systems of either Alice or Bob with an exploit such as
a buffer-overflow attack. Rather, Mallory exploits weaknesses in Player’s network protocol to
externally cause effects. This distinction is made to focus the scope of this research on Player’s

network protocol vulnerabilities rather than its software application vulnerabilities.

3.5 System Services

PDS provides two services: a command and control service and defense against exploits.
The command and control service receives an input stream of position commands and position
data-requests that are transmitted from Alice to Bob. A position command is successful if Bob

moves as commanded and fails if he either does not move or moves in a way other than
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commanded. A position data-request is successful if Bob replies with a correct position data
packet and fails if he either does not reply or replies with incorrect data. Failure modes as
described above for the command and control service are not considered part of this research as

they do not support the goals defined in Section 3.2.

The second service PDS provides is defense against exploits. Specifically, PDS protects
confidentiality, integrity, and availability. The outcome is a success if the system defeats the
exploit. The outcome is a failure, however, if the exploit is not defeated. The precise goals of

each exploit are enumerated in Section 3.10.3.

3.6 Workload

The workload submitted to PDS is composed of two distinct parts: a stream of
commands sent from Alice to Bob to exercise the legitimate command and control of Bob and
one of six exploits, launched by Mallory, to demonstrate the defensive service of PDS. Since the
goal of this research is to study real-time command and control, the legitimate command stream
models a human pilot remotely piloting the robot. This workload is comprised of a continuous,
periodic stream of commands. In addition, since a human pilot requires real-time feedback to
correctly pilot the robot, the legitimate command stream will also contain a certain ratio of

data-requests per commands. These workload parameters are defined in Section 3.8.2.

Exploits are submitted to the system as part of the workload. The six selected exploits
are designed to emulate common network attacks that compromise one of the principles of the
CIA security model. Each of the selected exploits demonstrates real-world impact on the

command and control of a mobile robot and is publically available. These exploits are

enumerated in Section 3.8.2.
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3.7 Performance Metrics

Platform

CPU Type

Memory

Network Interface Card
Operating System
Network Type

Player Version

Attack Tool

. IPsec Implementation
10. Cryptographic Algorithms
11. Power Supply

Player Defense System v

Defense Protocol Used
1. None
2. IPsec AH
3. IPsec ESP
4. IPsec AH+ESP

©COoNOOAWNE

slojoeH WalsAs

sialawered WalsAs ‘

Workload Parameters

Defense Protocol
1. Command Frequency (Component Under

2. Data Request to Test)
Command Ratio

Network

Metrics

1. Exploitation Outcome - Mallory
(Success or Failure)

2. CPU Utilization - Bob (% utilization)

3. Power Consumption - Bob (W)

4. Network Load (Kbps)

Workload Factors

Mallory Exploit
1. None
Eavesdropping
2. Passive Sniffing
Man-in-the-Middle
3. ARP Cache Poisoning
4. TCP Connection Hijacking
Denial-of-Service
5. TCP Reset
6. TCP Connection Flooding

Figure 11. Experimental Parameters, Factors (bold), and Metrics

The following metrics, depicted in Figure 11, measure the performance impact of the

defense protocol employed by PDS.

e Exploitation Outcome (Mallory)— Each exploit launched by Mallory has a

specific goal to violate one principle of the CIA security model. The success or
failure of each exploit is measured based upon whether the PDS defeats or fails to
defeat the given exploit. This metric supports research goals 1 and 2 by
measuring both vulnerabilities in Player as well as the effectiveness of [Psec.

e CPU Utilization (Bob)— Bob expends CPU execution time (in % utilization) to

communicate with Alice, process each legitimate command, and process any
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malicious messages from Mallory. Since Bob incurs processing overhead by using
the defense protocol, this metric supports research goal 3 by quantifying the CPU

utilization overhead of IPsec to secure the Player protocol.

¢ Power Consumption (Bob)— Bob consumes power (in Watts) to communicate
with Alice, process each legitimate command, and process any malicious messages
from Mallory. This includes the power consumed by the embedded system
including all peripheral 10 devices attached to it but excludes the internal iRobot
Create microcontroller and hardware, depicted in Figure 9. Because the robot is
operating in a mobile environment with limited energy stores, this metric
supports research goal 3 by quantifying the energy cost of IPsec to secure the
Player protocol.

e Network Load— Alice, Bob, and Mallory transmit messages over the network
and consume bandwidth (in Kbps). End systems use a shared, bandwidth-
limited network to communicate. This metric supports research goal 3 by

quantifying the network bandwidth cost of IPsec to secure the Player protocol.

3.8 Parameters

The system and workload parameters below affect the performance of the PDS.

3.8.1 System Parameters.

e Platform— The platform is the high level computing system that Alice, Bob, and
Mallory run on. Configuration instructions for each system are included in Appendix
C.
— Alice— IBM Thinkpad T43 [Len11]

— Bob— iRobot Create [Iroll], Gumstix Overo Earth [Ovell]
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— Mallory— Dell Latitude D630 [Del00]
CPU Type— More powerful CPU architectures at higher clock speeds impact the
ability of Alice, Bob, and Mallory to transmit and process messages at higher rates.
The following are the CPUs on each system. Bob’s CPU directly affects the CPU
utilization and power consumption metric.

— Alice— Intel Pentium M 750 — x86 — 1.86GHz

— Bob— TI OMAP3530 - ARMv7 — 720MHz

— Mallory— Intel Core 2 Duo T7500 — x86 — 2.2GHz
Memory— The following are the amounts of random access memory (RAM)
available to Alice, Bob, and Mallory to store temporary information used for
computing. A lack of sufficient memory may cause the client or server process to
crash.

— Alice—1.5GB

— Bob—256MB (Pre Sept 2011 Model) [Gum11]

— Mallory— 2GB

Network Interface Card (NIC)— The NIC is the peripheral 10O device that Alice,

Bob, and Mallory use to transmit and receive messages over the network. Each NIC
directly affects the network load metric and Bob’s NIC also affects power
consumption. The NICs used for each system are listed below.

— Alice— Broadcom NetXtreme Fast Ethernet

— Bob—SMC 2209USB/ETH

— Mallory— Broadcom 57XX Gigabit Ethernet

Operating System (OS)— The OS provides processing and networking services to

processes running on Alice, Bob, and Mallory. It affects how network packets are
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handled and how kernel routines are executed. Bob’s OS directly affects the CPU
utilization and power consumption metrics. All systems are configured with the
latest stable Linux kernel so that results are applicable to future work.

— Alice— Ubuntu 11.10, Linux Kernel 3.0.0

— Bob— Overo Angstrom omap3-console-image 2011.03, Linux Kernel 3.0.0

— Mallory— Ubuntu 11.10, Linux Kernel 3.0.0
Network Type— The network type is the physical layer communication channel that
Alice, Bob, and Mallory use to communicate. The data-link layer protocol affects
the network load metric as it dictates how users encapsulate higher level protocols
and handle collisions. The network type used is an IEEE 802.3u 100BASE-TX
Ethernet network. All systems share the same collision domain through a HP
Procurve 10/100Mbps Hub 12 — J3294A Ethernet hub. Use of a wireless network is
excluded from this research because the research goals, defined in Section 3.2, focus
on studying vulnerabilities in the Player protocol for a single client and server. A
realistic wireless environment would have also introduced additional system
parameters. The Ethernet LAN is expected to produce more repeatable results while
still providing a shared, bandwidth-limited medium.
Player Version— Alice and Bob use Player client and server, respectively, to perform
command and control services. The version selected affects the CPU utilization and
power consumption metrics. Playerjoy is a Player client that is included in the
Player project that allows 2-dimentional position control of a server through joystick
or keyboard input. The latest stable release is selected so that results are applicable
to future work.

— Alice— Playerjoy 3.0.2 (Client)

— Bob— Player 3.0.2 (Server)

33

www.manharaa.com



Attack Tool— Mallory uses a packet sniffer and injector to dissect and forge packets
that implement exploits. The attack tool will affect the network load and the
exploitation outcome metrics. The latest release is selected so that results are
applicable to future work.

— Mallory— Scapy 2.2.0, Python 2.7.2

Defense Protocol— The defense protocol is a security mechanism in which Alice and

Bob use some shared secret to protect confidentiality, integrity, or availability. The
defense protocols are enumerated in Section 3.9.

IPsec Implementation— The IPsec implementation consists of the software that

implements the [Psec protocol on Alice and Bob. The latest available ipsec-tools
package is selected for each operating system distribution listed below. The
Angstrom 2011.03 distribution (Bob) has an older version than is available to
Ubuntu 11.10 (Alice) but remains functionally the same.
— Alice— Linux Kernel 3.0.0, RFC 4302 |Ken05| and 4303 [Ken0b5a|
ipsec-tools 0.8.0
— Bob— Linux Kernel 3.0.0, RFC 4302 [Ken05] and 4303 [Ken05a]

ipsec-tools 0.7.2

Cryptographic Algorithm— IPsec AH uses a hash-based message authentication code

(HMAC) to provide authentication. IPsec ESP uses a symmetric-key encryption
algorithm to provide confidentiality. The selected cryptographic algorithms affect
Bob’s CPU and power consumption metrics. These algorithms are selected because
they are recommended by NIST [Nis03, Nis08|. Large key sizes are used to make
brute force attack infeasible and to induce the highest computational stress an

embedded device is likely to encounter.

34

www.manharaa.com



— Alice— SHA-256, AES-256

— Bob— SHA-256, AES-256
Power Supply— Bob requires power for two separate systems, the iRobot Create
robot and the Gumstix Overo Earth embedded system, depicted in Figure 9. A goal
of this research is to quantify the cost of protecting the command and control
system, so the Overo Earth is powered separately from the Create robot to remove
any variation caused by the robot hardware from the power analysis. A detailed
wiring diagram of the power subsystem is included in Appendix D.

— Bob— iRobot Create: Wagan Tech MTR72DAUL-1250A 14VDC 5A

Regulated Power Supply

Gumstix Overo Earth: CUI INC EPS050100 5VDC 1A Regulated Power

Supply

3.8.2 Workload Parameters.

Command Frequency— Alice transmits commands to Bob at a regular interval (in

commands/s) to exercise legitimate command and control. Using Playerjoy as the
client, a pilot study reveals that the maximum command frequency is limited by the
latency of Bob servicing the data-request. Alice waits for Bob to respond with the
data before issuing a new command.

— Alice— 5 commands/s

Data Request to Command Ratio— The data-request to command ratio is the ratio

(in data-requests/command) of data-requests sent from Alice to Bob for every
command. This parameter defines the type of feedback a human pilot receives from
the robot while remotely piloting it.

— Alice— 1 data-request/command
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e Exploit— Mallory launches one of six specific attacks that each target a single
principle of the CIA security model. Each exploit is inseparably related to its
exploitation outcome metric and can also affect Bob’s CPU utilization, power

consumption, and network load. These exploits are enumerated in Section 3.9.

3.9 Factors

Table 3 summarizes the factors and levels used in this research.

Table 3. Factors and Levels

Factor Levels
Defense Protocol | None, [Psec AH, IPsec ESP, IPsec AH+ESP
Exploit None, Passive Sniffing,

ARP Cache Poisoning, TCP Connection Hijacking,
TCP Reset, TCP Connection Flooding

o Defense Protocol— The defense protocol is chosen as a factor because it is the

component under test. It is expected to affect all performance metrics. IPsec is used
for the defense protocol levels because it provides confidentiality and integrity
protection for any application layer protocol without the need to modify that
application. Transport mode is selected for this research because the single client-
server pair, defined in Section 3.4, resides on the same subnet with no intermediary
routers. The IPsec configuration file that defines the security associations used by
Alice and Bob is included in Appendix B. PGP, SSL, and SSH are excluded from
this research because they require modification to the Player application. Tcpcrypt
is also excluded because it is still a work in progress and authentication requires
modification to the Player application. The factor levels are

— None— No defense protocol is used.

— IPsec Authentication Header (AH)— IPsec with integrity and authentication

protection in transport mode.
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— IPsec Encapsulating Security Protocol (ESP)— IPsec with confidentiality
protection and no optional authentication in transport mode.

— IPsec Authentication Header and Encapsulating Security Protocol
(AH+ESP)— IPsec AH in transport mode for integrity and authentication of
an ESP payload in transport mode for confidentiality protection.

o Exploit— The exploit factor characterizes the ability of the defense protocol to defeat
attacks against the CIA security model. Each level below represents a published
network attack described in detail in Section 2.5.

— None— Mallory does not launch an attack against Alice and Bob.

— Confidentiality: Eavesdropping

= Passive Sniffing— Mallory passively sniffs and dissects the position

data messages Bob transmits to determine the positionX, positionY,
and positionA fields.
— Integrity: Man-in-the-middle (MITM)

= ARP Cache Poisoning— Mallory sends malicious ARP messages to

Alice and Bob to trick them into sending communication to her rather
than each other. Mallory then forwards traffic between Alice and Bob
and violates the integrity of Bob’s position data messages by altering
the positionX, positionY, and positionA fields.

= TCP Connection Hijacking— Mallory sends forged TCP segments to

Alice and Bob to desynchronize their connection. Mallory forwards
correctly synchronized versions of Alice and Bob’s packets and
violates the integrity of Bob’s data messages by altering the

positionX, positionY, and positionA fields.
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— Availability: Denial-of-Service (DoS)
=  TCP Reset— Mallory sets the TCP reset flag in a forged TCP
segment and transmits it to both Alice and Bob to terminate their

connection.

=  TCP Connection Flooding— Mallory floods Bob with forged TCP

SYN packets from pseudo-random IP addresses, listens for Bob’s
SYN-ACK responses, and sends a forged ACK to finish the spoofed
TCP connections. This causes Bob to devote CPU and memory
resources to the spoofed connections and eventually causes the Player

server to crash.

3.10 Evaluation Technique

3.10.1 Experimental Configuration. To evaluate the system, measurements are taken of
an experimental setup of PDS (Figure 12). Measurement is the ideal evaluation technique since
many of the metrics are affected by the physical architecture and resources of the end systems.
Since the robot is a physical system and moves through its environment, this technique leads to

more realistic results that are applicable to other mobile systems.
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Ethernet Hub
192.168.1.XXX Subnet
HP Procurve 10/100Mbps
Hub 12 - J3294A

Ethernet | j

(—Ethernet

Ethernet—w

Ethernet:

Alice
192.168.1.2
IBM Thinkpad T43
Ubuntu 11.10
Playerjoy Client 3.0.2

Bob
192.168.1.3
iRobot Create/Overo Earth
Overo Angstrom 2011.03
Player Server 3.0.2

Mallory
192.168.1.4
Dell Latitude D630
Ubuntu 11.10
Scapy 2.1.0

Network Monitor
<No IP Address>
Dell Inspiron 6000
Windows 7 SP1 32-bit
Wireshark 1.6.2
w/ Player Dissector

1
5VDC

Power Supply
CUI INC EPS050100
Regulated 5VDC 1A

~5VDCH

DAQ Board
NI USB-6008
Analog Voltage/Current
Monitor

USB

Power Monitor
<No Network Connection>
Dell Latitude E6510
Windows 7 SP1 64-bit
NI LabVIEW 9.0.1 32-bit

Figure 12. Experimental Configuration

3.10.2 Metric Gathering.

e Exploitation Qutcome (Mallory)— Mallory’s exploit succeeds if it violates the CIA

security model principle that it targets, and fails if it does not. The precise targets

for each exploit are listed in Section 3.10.3.

e CPU Utilization (Bob)— The Linux sysstat 9.0.6 package monitors the CPU

resources that Bob consumes during an experiment. The command sar —-u 1 80

> cpuUtil.txt is run on Bob’s console to create a tab separated value (TSV) file

that contains 80 CPU utilization results each 1 second apart. This corresponds with

the experimental timeline provided in Section 3.10.3 in which 80 seconds is selected

for the Attack phase. The 1 second interval is selected because it is the highest

granularity the sysstat package provides.
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e Power Consumption (Bob)— The Power Monitor, shown in Figure 12, monitors the

power consumption of Bob’s embedded system. The Power Monitor consists of a
Dell Latitude E6510 running Windows 7 SP1 64-bit and NI LabVIEW 9.0.1 32-bit.
It is attached to an NI USB-6008 data acquisition (DAQ) board that samples the
voltage and current flowing into Bob’s Overo Earth embedded system. Voltage is
measured directly using a 12-bit analog to digital converter (ADC), and current is
sampled by measuring the voltage drop across a 0.1Q2 shunt resistor. A LabVIEW
virtual instrument (VI) computes the instantaneous power draw, displays a chart
graphing the data over time, and logs the data to a comma separated value (CSV)
file. The LabVIEW VI code is included in Appendix E. A detailed wiring diagram
of the power monitoring system is available in Appendix D.

o Network Load— The Network Monitor, shown in Figure 12, monitors all network
traffic transmitted across the Ethernet Hub. The Network Monitor is a Dell Inspiron
6000 running Windows 7 SP1 32-bit. It uses Wireshark 1.6.2 to passively capture
and record all traffic transmitted by Alice, Bob, and Mallory. A custom dissector is
added to Wireshark to dissect Player messages into a human readable format. The
source code for the Player dissector is available in Appendix A. The total network
load (in bytes) is calculated and recorded with the Statistics > Summary

command in Wireshark.

3.10.3 Experimental Timeline. The timeline used to perform the experiments defined in
this chapter is divided into four phases, depicted in Figure 13. In the Setup phase, all of the
machines that make up the SUT (Alice, Bob, and Mallory) are powered on and boot into their
respective operating systems. Alice and Bob load the appropriate IPsec security associations, as

shown in Appendix B, that correspond to the defense protocol factor level being studied. Bob
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then launches the Player server, and Alice launches the Player client to connect to the server.
During the Setup phase, the Power Monitor and Network Monitor launch LabVIEW and

Wireshark, respectively.

After the Player client connects to the server, the Steady State phase is entered. During
this phase, the client begins sending velocity commands (vx=0m/s, vy=0m/s, va=0m/s) and
position data-requests. Since the robot is never commanded to accelerate, the correct position

data from the server will always be: px=0m, py=0m, pa=0m.

Time
Phase Experimental Events Data Collection Events
Setup [Alice, Bob, Mallory] Powered On [Pow Mon] LabVIEW VI Launched
[Alice, Bob, Mallory] Booted [Net Mon] Wireshark Launched
[Alice, Bob] IPsec Security Associations Loaded
[Bob] Player Server Launched
[Alice] Player Client Launched

[Alice, Bob] Player Client Connects to Server

Steady State [Alice, Bob] Player Client/Sever Begin Sending
Command/Data Loop

Attack v [Bob] Begins sysstat Log

[Mallory] Executes Exploit Simultaneous | [Pow Mon] Begins LabVIEW VI Log
[Net Mon] Begins Wireshark Capture

80 seconds

[Alice, Bob] Security Compromised
(if exploit success)

Conclusion [Bob] Ends sysstat

Simultaneous | [Pow Mon] Ends LabVIEW Virtual Instrument
[Net Mon] Ends Wireshark Capture

Figure 13. Experimental Timeline

After Steady State has been achieved the Attack phase is executed. Mallory executes
the exploit that corresponds to the factor level being studied. Simultaneously, the sysstat log
(CPU metric), LabVIEW VI log (power metric), and Wireshark capture (network metric) are
started synchronously with an 80 second clock. Eighty seconds is selected as the length of time

to collect data because it accommodates the slowest exploit (TCP connection flooding), which
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from pilot study data requires 70-75s to successfully overwhelm Bob in this experimental

configuration.

After 80 seconds has passed, the Conclusion phase is entered and all data collection is
halted. Sysstat, LabVIEW, and Wireshark are configured to halt automatically after the
allotted time. Exploit success is determined in three ways based upon which CIA security
model principle is targeted. When targeting confidentiality, the exploit is successful if Mallory’s
console prints out the correct position data (px=0m, py=0m, pa=0m). When targeting
integrity, the exploit is successful if Alice’s console prints out incorrect position data (anything
other than px=0m, py=0m, pa=0m). When targeting availability, the exploit is successful if

the connection between Alice and Bob is terminated during the Attack phase.

3.10.4 Validation Strategy. Stage v4.0.1, a Player simulator described in Section 2.4.2, is
used to validate Player responses and robot behavior of the PDS under the baseline workload.
Performance results are compared with other related works to validate system response [CDNOO,
EMS02, AVT04]. While the results are not expected to match exactly, there should be a
correlation between the results observed in the SUT and those published in the academic
literature. Section 4.3.3 validates this research by comparing experimental results with these

related works.

3.11 Experimental Design

To measure the relationships between all of the factors listed in Section 3.9, a full
factorial design is selected. A total of two factors are chosen with 4 and 6 levels each. A full
factorial design requires 4 x 6 = 24 unique experiments. The statistical confidence level is 95%.

It is expected that no more than 5 repetitions will be required for a total of 5 x 24 = 120

experiments.
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3.12 Methodology Summary

This chapter defined the methodology to 1) Demonstrate the vulnerability of the Player
protocol to network attack, 2) Demonstrate the effectiveness of IPsec to secure the Player
protocol, and 3) Quantify the cost of IPsec to secure the Player protocol. The Player Defense
System (PDS) provides both legitimate command and control services for a Player robot as well
as defense against exploits that compromise the confidentiality, integrity, or availability of the
system. The components, performance metrics, system and workload parameters, and factors
for this research are also defined. The evaluation technique and experimental design are

described to allow the experiments herein to be reproduced.
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IV. Analysis and Results
4.1 Chapter Overview
This chapter presents an analysis of the data collected from the experiments defined in
Chapter 3. Analysis of the data satisfies research goals 1 and 2, defined in Section 3.2, by
demonstrating the vulnerabilities of Player and the effectiveness of [Psec. A cost function is

defined to satisfy research goal 3 by quantifying the cost of IPsec to secure the Player protocol.

The power consumption metric, detailed in Section 3.7, is excluded from analysis in this
chapter for several reasons. Because a wired network is selected, the CPU of the embedded
system is the only predominant power consuming device. Since the power consumption of the
CPU is directly related to its utilization, power consumption is a redundant metric for this
experimental configuration [Tex11|. The power consumption data is none-the-less included in
Appendix F to aid future research in this area but is not discussed in this chapter. Chapter 5

provides suggestions for future work related to power analysis.

Section 4.2 describes a cost function to analyze the performance tradeoffs associated with
employing IPsec with respect to CPU utilization, network load, and defensive capability.
Section 4.3 inputs the data collected in this research into the cost function to determine the cost
of employing each defense protocol under a specific scenario. Section 4.4 computes the cost
function with respect to two additional scenarios to demonstrate the effect of scenario
parameters on cost output. Section 4.5 applies the results from this research to the broader
scope of securing Internet client-server communication. Section 4.6 provides a summary of the

analysis and results.

4.2 Cost Function
The cost function defined in this section synthesizes three distinct scalar costs (exploit

success, CPU utilization, and network load) measured in this research into a single scalar output
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(cost). A scenario defines a set of scenario parameters that define how these three measured
costs are normalized in the cost function. By returning a single scalar output, results from each

defense protocol can be compared to determine the optimal defense protocol for a given scenario.

4.2.1 Cost Function Definition. Mathematical optimization is the selection of the best
element from some set of alternatives [Danl0]. A subset of the optimization problem is
maximizing (utility) or minimizing (cost) a real function. A cost function, therefore, is a real

function f with an output f(x) for which an optimal x minimizes f(x).

4.2.2 Cost Function Parameters. Two sets of parameters make up the input of the cost
function: scenario and measured parameters. Scenario parameters are selected based on the
capabilities of the System Under Test (SUT), knowledge of attacker (Mallory) capabilities, and
the value of the secure operation of the system. {d} is the set of available defense protocols that
the SUT can provide. {e} is the set of possible exploits that Mallory can launch against Alice
and Bob. Scenario parameters are constant with respect to all combinations of {d} and {e}.
For each exploit e € {e}, the probability that Mallory will select exploit e is defined as pe; this
parameter weights the likelihood of the possible exploits. The exploitation outcome probability
space of all pe naturally sums to 1,

Pe =1 (1)
ec{e}

A cost unit is defined as the unit by which outputs from the cost function are compared.
All variables used in the cost function must be converted to cost units. Cost units are
intentionally left ambiguous in the general case and are meant to be replaced with meaningful
units when applied to a fielded system. Decision makers could choose alternative units, such as

dollars or a metric of mission assurance. The security cost of losing one element of the CIA
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security model is defined as sc, si, and sa in cost units. Because it is assumed for the purposes of

this research that each exploit targets only one of the CIA security model principles, se is the

security cost (sc, si, or sa) associated with each exploit (e € {e}) when it is successful. That is,

each exploit can only incur the cost of compromising a single security principle in this particular

analytical model. The ratios of CPU utilization and network load to cost units are k. and Ky,

respectively. Scenario parameters are summarized in Table 4. A scenario is defined as a

particular assignment of these scenario parameters.

Table 4. Scenario Parameters

Parameter Description Units

{d} Set of available defense protocols None

{e} Set of available exploits None

Pe Probability of exploit e € {e} being used None

Sc Security cost of losing confidentiality cost units

S Security cost of losing integrity cost units

Sa Security cost of losing availability cost units

Se Security cost (sc, si, or sa) of exploit e € {e} when successful | cost units

ke Ratio of cost units to CPU utilization cost units

% utilization

Kq Ratio of cost units to Network load cost units

Kbps

The measured parameters of the cost function are determined by subjecting the SUT to

the available exploits (e € {e}) while operating under the available defense protocols (d € {d})

and measuring the system response. The CPU utilization is defined as ce in % utilization. The

network load is defined as ne in Kbps. The probability of exploit success is ps,and is measured

in successes/total attempts. The measured parameters are summarized in Table 5.

Table 5. Measured Parameters

Parameter Description Units

Ce CPU utilization % utilization

Ne Network load Kbps

Ds, Probability of exploit succeeding | successes/total attempts
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4.2.3 Generalized Cost Function. The generalized cost function (2) computes the cost of
running a defense protocol (d € {d}) for the SUT under a specific scenario,
fa= ) Pe(kece +knmte +ps,5e) @)
e€{e}
Each term is compromised of scenario (Table 4) and measured parameters (Table 5).
The summation of all terms represents the total cost for operating a defense protocol under
some threat of attack. Output from the cost function is compared to determine which defense

protocol results in the lowest cost for a given scenario.

4.2.4 Confidence Interval for Cost Function. The confidence interval of the cost function
is calculated using the propagation of uncertainty. Because the terms are linear and

uncorrelated, the propagation of uncertainty for linear, uncorrelated terms is

In this equation, n is the number of terms, a; represents constants of term i, g; is the

sample standard deviation of sampled values of term i, and m is the number of samples for the

measured values. The output, sz, is the variance of mean, and /afz is the standard error of the

mean.

Substituting the terms from the generalized cost function (2) into the propagation of

uncertainty (3) creates the propagation of uncertainty for the generalized cost function,

2

afz _ Z (pekc)z (Uce )2 + ok, )? (Gne)Z + (pus)? (Upse> (4)

eefe}

Vm Vm vm
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The 95% confidence interval of the mean is calculated by inputting the standard error

( afz) into,
fa £1.96 * of (5)

4.3 Application of Data to Cost Function
This section covers the parameter selection and data collected from this research for use
as input into the cost function defined in Section 4.2. The output of the cost function is

compared to determine the defense protocol with the lowest cost.

4.3.1 Scenario Selection. The defense protocol and exploit factor levels chosen in Section
3.9 are used to populate {d} and {e}. Each of the six exploits (e € {e}) is assigned equal
probability (pe), 1/6. This scenario, named the Likely Exploit Scenario, weights all exploits
equally and presents a high probability of attack (1— pnone = 5/6 = 83.3%). The security costs,
Sc, S1, Sa are also equally weighted at 1 cost unit each. The security cost, s. of each exploit is set

to the CIA security principle that it targets with the exception of Snone = 0.

The maximum measured CPU utilization (Cmax) and network load (nmax) are listed in
Table 6. These measured values are used to select the remaining two scenario parameters in the

following paragraph.

Table 6. Maximum System Resources

Parameter Description Value Units
Cmax Maximum CPU utilization | 100 % utilization
Nmax Maximum network load 9018 Kbps

The CPU utilization to cost unit ratio (kc) is set to 1/100 so that cjpgy * ke =
1 cost unit = s,. The network load to cost unit ratio (k) is set to 1/9018 so that ny,a, *k, =

1 cost unit = s, This selection of ke and k, equates consuming all CPU or network resources
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with the cost of losing availability. The PDS scenario parameters for the Likely Exploit

Scenario are summarized in Table 7.

Table 7. Scenario Parameters: Likely Exploit Scenario

Parameter Value Units
{d} {None, IPsec AH, IPsec ESP, IPsec AH+ESP} None
{e} {None, Passive Sniffing, None
ARP Cache Poisoning, TCP Connection Hijacking,
TCP Reset, TCP Connection Flooding}
PnNone 1/6 None
PEaves 1/6 None
PARP 1/6 None
PHijack 1/6 None
PReset 1/6 None
PFlood 1/6 None
Sc 1 cost units
SI 1 cost units
Sa 1 cost units
SNone 0 cost units
SEaves Sc cost units
SARP Si cost units
SHijack SI cost units
SReset Sa cost units
SFlood Sa cost units
ke 1/100 cost units
% utilization
Ko 1/9018 cost units
Kbps

4.3.2 Measured Parameters. The measured parameters are populated from the
experimental data collected from the experiments described in Chapter 3. The measured
parameter tables in this section (Table 8, 9, and 10) list the average values for the five
replications of each factor level combination. The raw data for each factor level combination is

included in Appendix F.

Table 8 shows the measured results of the probability of exploit success (ps,) against the
available defense protocols in successes/total attempts. This data satisfies research goal 1,

defined in Section 3.2, by demonstrating that the Player protocol is vulnerable to attack. Note
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that every exploit succeeds when no defense protocol is used. This is because neither the TCP
header nor Player payload are authenticated or encrypted. TCP connection hijacking has a
success rate of only 80% because of the large amount of traffic (ACK storm) it generates during
the attack. It is hypothesized that Alice occasionally does not correctly receive forged Player
data either because Mallory’s exploit is overwhelmed and becomes unresponsive, or the excessive

ACK storm packets collide with the forged packets on the Ethernet hub.

The exploitation success data (Table 8) also satisfies research goal 2 by demonstrating
that IPsec is able to protect the Player protocol. Passive sniffing is successful against 1Psec AH
because Mallory is able to dissect the unencrypted Player payload. IPsec AH defeats all other
exploits because it authenticates the TCP header and Player payload. [Psec ESP defeats all of
the tested exploits because Scapy is unable to dissect the encrypted TCP header and Player
payload. However, it should be noted that it is conceivable that attacks against IPsec ESP in
encrypt-only mode, similar to those Paterson and Yau demonstrate, could be used against
Player [PaY06]. For example, toggling the TCP reset flag of encrypted Player packets could
lead to a successful TCP reset attack. So while IPsec ESP defeats integrity exploits described in
Section 3.9, it does not ensure integrity protection in encrypt-only mode. IPsec AH+ESP
defeats all exploits described in Section 3.9 because it both authenticates and encrypts the

transport and application layers. The attacks implemented in this research are infeasible

against [Psec AH-+ESP.
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Table 8. Measured Probability of Exploit Success (successes/total attempts)

Factor Level None | IPsec AH | IPsec ESP | IPsec AH+ESP
None NA NA NA NA
Passive Sniffing 5/5 5/5 0/5 0/5
ARP Cache Poisoning 5/5 0/5 0/5 0/5
TCP Connection Hijacking 4/5 0/5 0/5 0/5
TCP Reset 5/5 0/5 0/5 0/5
TCP Connection Flooding 5/5 0/5 0/5 0/5

The measured CPU utilization (c.) in % utilization is given in Table 9. The amount of
CPU overhead introduced solely by IPsec is determined by examining the row where no exploit
is used (None). CPU utilization increases as expected when the AH and ESP protocols are
applied due to the computational load of SHA-256 and AES-256, respectively. 1Psec AH-+ESP
results in an increase of 0.52% CPU utilization (16% increase relative to no defense protocol).
The SUT computational resources can easily handle protecting Player with IPsec AH+ESP.
When no defense protocol is used, TCP connection hijacking results in 95.66% CPU utilization
because it generates an ACK Storm, described in Section 2.5.2. TCP connection flooding results
in 40.16% CPU utilization because Bob allocates resources for numerous spoofed TCP
connections during this attack. TCP reset has the opposite effect and lowers the CPU

utilization by 0.35% utilization because it terminates the TCP connection between Alice and

Bob.
Table 9. Measured CPU Utilization (% utilization)
Factor Level None | IPsec AH | IPsec ESP IPsec AH+ESP
None 3.26 3.40 3.41 3.78
Passive Sniffing 3.26 3.40 3.41 3.78
ARP Cache Poisoning 3.79 3.10 4.54 4.06
TCP Connection Hijacking 95.66 3.50 3.22 4.05
TCP Reset 2.91 3.33 3.52 3.86
TCP Connection Flooding 40.16 3.56 3.97 4.32
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The measured network load (ne) in Kbps is given in Table 10. The amount of network
overhead introduced solely by IPsec is determined by examining the row where no exploit is
used (None). Network load increases as expected due to the extra headers added by IPsec AH
and ESP. IPsec AH+ESP increases network load by 22.9Kbps (64.3% increase relative to no
defense protocol). The SUT’s network resources can easily handle a single Player client-server
pair protected by IPsec AH+ESP, as 58.5Kbps accounts for only 0.6% of the maximum
measured network bandwidth (nmax) defined in Table 6. When no defense protocol is used, ARP
cache poisoning doubles the consumed network resources because every message is forwarded
again into the network by Mallory with a corrected MAC address. TCP connection hijacking
creates a desynchronized TCP state between Alice and Bob, which generates an ACK storm and
consumes all of the available network bandwidth, 9018Kbps (nmax). Because TCP reset quickly
terminates the connection between Alice and Bob, no new network traffic is transmitted after
the attack is successful. TCP connection flooding increases the network load by 68.4Kbps due
to Mallory’s spoofed SYN packets that she sends to Bob, Bob’s SYN-ACK responses, and

Mallory’s subsequent spoofed ACK’s.

Table 10. Measured Network Load (Kbps)

Factor Level Nomne IPsec AH | IPsec ESP IPsec AH+ESP
None 35.6 44.8 49.3 58.5
Passive Sniffing 35.6 44.8 49.3 58.5
ARP Cache Poisoning 70.3 0.5 98.6 116.5
TCP Connection Hijacking 9018 80.5 49.3 58.4
TCP Reset 0.1 79.3 49.2 58.2
TCP Connection Flooding 104.0 84.1 90.8 97.5

4.3.3 Validation. Results published by Elkeelany et al. validate the network load metrics
gathered for this research [EMS02|. Their work shows IPsec AH increases the packet size by 24

bytes due to 12 bytes of fixed header and 12 bytes of Integrity Check Value (ICV). Table 11
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shows the average measured packet size for the data collected in this research. These values are
calculated by dividing the total network load in bytes by the number of packets transmitted
(Appendix F). IPsec AH increases the measured packet size by the expected 24 bytes.
Elkeelany et al. also conclude that IPsec ESP increases the packet size by 22 bytes due to 10
bytes of fixed header and 12 bytes of ICV. The authors note that ESP may use additional
padding (up to 255 bytes), depending on the selected encryption algorithm. Table 11 shows the
average measured packet size (in bytes) for this research increased by 36 bytes as a result of
ESP. Note that ESP is not configured to use optional authentication (i.e., no ICV is appended)
in these experiments, so the expected overhead of ESP is 10 bytes of fixed header plus
encryption padding. In this research the encryption algorithm, AES-256, is responsible for 26
bytes of additional padding on average. The IPsec AH+ESP network load reported in Section
4.3.2 is validated because its overhead is the expected sum of both AH and ESP: 24 bytes + 36
bytes = 60 bytes.

Table 11. Average Measured Packet Size (bytes)

Factor Level | None | IPsec AH IPsec ESP IPsec AH+ESP
None 94 118 130 154

Overhead 0 24 36 60

Results from Argyroudis et al. validate the CPU metrics gathered in this research
[AVTO04]. The authors find that the network security protocols, SSL and IPsec, do not
significantly impact real-time communication on mobile devices. An older HP iPAQ H3630 with
a 206MHz StrongARM processor and 32MB RAM is tested in their research. Their system has
significantly less resources than the embedded system (Bob) specified in Section 3.8. As a
result, it is expected that the SUT’s CPU resources in this research are affected even less by

IPsec. The measured CPU utilization (Table 9) confirms that the CPU overhead is relatively
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little (0.52% utilization) when using the most comprehensive protection, IPsec AH+ESP, thus

validating this data.

4.3.4 PDS Cost Function Results. The generalized cost function (2) is expanded with
the exploits ({e}) and security costs (se) defined for the selected scenario parameters (Table 7)

to compose the expanded cost function,

fa = Prone (KcCnone + knfinone + Psyone0)
+ Dsnirf (KeCsnipr + Knlsnirr + PsgpirpSc)
+ PARP(chARP + knnagp + pSARpsl)
+ PHijack (chHijack + knnyijack + 'Psm,-acksz)
+ PReset(chReset + knngeser + PsResetSA)

+ Driooa (chFlood + knnFlood + psFloodsA)

Results from the expanded cost function using as inputs the selected scenario parameters
(Table 7) and the measured parameters (Tables 8, 9, and 10) are totaled for each term in Table
12. Comparison between the total costs of each defense protocol is reserved until the confidence
intervals are calculated later in this section. When no defense protocol is used, the system
incurs large cost from each exploit because each exploit successfully compromises the security
cost (se) associated with it. IPsec AH in penalized by one security cost because it does not
defeat passive sniffing. Most notable in Table 12 is the contrast between cells in which exploits
are successful (>0.17 cost units) and the cells in which exploits are not successful (<0.17 cost
units). This is a result of both the scenario parameter selection in Table 7 and the low CPU

and network overhead IPsec introduces relative to the maximum resources available to the SUT.
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Table 12. Cost Function Results: Likely Exploit Scenario (cost units)

Factor Level None | IPsec AH | IPsec ESP | IPsec AH+ESP
None 0.0061 0.0065 0.0066 0.0074
Passive Sniffing 0.1728 0.1731 0.0066 0.0074
ARP Cache Poisoning 0.1743 0.0052 0.0094 0.0089
TCP Connection Hijacking 0.4583 0.0073 0.0063 0.0078
TCP Reset 0.1715 0.0070 0.0068 0.0075
TCP Connection Flooding 0.2355 0.0075 0.0083 0.0090
Total Cost, f, 1.2184 0.2066 0.0439 0.0480

The expanded propagation of uncertainty function (7) is composed from the propagation

of uncertainty for the generalized cost function (4) and the exploits ({e}) defined for the scenario

parameters in Table 7. The number of replications, m, for this research is 5.
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The standard error of the mean of the expanded cost function (Table 13) is calculated by

inputting the scenario parameters (Table 7) and measured parameters (Tables 8, 9, and 10) into

the expanded propagation of uncertainty cost function (7).

TCP connection hijacking

introduces a notably large amount of error from its probability of exploit success (ps,) term,

which propagates to create a large total standard error when no defense protocol is used (None).
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This could be mitigated by running additional replications, but as shown later in this section,

the resulting confidence interval is sufficiently distinct to draw conclusions without them.

Table 13. Standard Error: Likely Exploit Scenario (cost units)

Factor Level None IPsec AH | IPsec ESP | IPsec AH+ESP
None 4.851E-07 8.457E-07 2.23E-06 3.597E-07
Passive Sniffing 1.347E-08 2.349E-08 6.19E-08 9.993E-09
ARP Cache Poisoning 3.332E-07 1.440E-07 5.13E-07 1.457E-08
TCP Connection Hijacking 0.001112 1.764E-08 1.39E-08 8.692E-09
TCP Reset 2.234E-08 9.453E-10 8.92E-08 3.950E-08
TCP Connection Flooding 4.931E-07 9.796E-09 1.47E-07 1.539E-07
Total Variance of the mean, o 0.0011136 1.041E-06 3.05E-06 5.864E-07
Total Standard Error of the mean, oy 0.03337 0.00102 0.00175 0.00077

The 95% confidence interval for each defense protocol cost (Table 14) is calculated by

populating the 95% confidence interval equation for the mean (5) with the cost function results

(Table 12) and the standard error (Table 13).

Table 14. 95% Confidence Interval: Likely Exploit Scenario (cost units)

None IPsec AH | IPsec ESP IPsec AH+ESP
Lower 95% Limit 1.1530 0.2046 0.0404 0.0465
Mean 1.2184 0.2066 0.0439 0.0480
Upper 95% Limit 1.2838 0.2086 0.0473 0.0495

Figure 14 plots the 95% confidence interval of the mean of the cost function results

(Table 14). The results show that IPsec ESP and IPsec AH+ESP result in the lowest cost.

These minimum costs are a consequence of both the ability to defeat all of the exploits in this

research, as well as the relatively low overhead IPsec introduces with respect to the total CPU

and network resources of the SUT. Since the confidence intervals for IPsec ESP and IPsec

AH-+ESP overlap, this experiment cannot differentiate them for this scenario. It is

hypothesized that with additional tests, [Psec ESP would result in a statistically-significant
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lower cost because IPsec ESP consumes fewer CPU and network resources than IPsec AH+ESP,
while still defeating all of the exploits. It is important to note that Patterson and Yau
demonstrate attacks on IPsec ESP when not used in conjunction with authentication [PaYO06].
Thus, for the Likely Exploit Scenario, IPsec AH+ESP would be the preferred defense protocol

given its small additional cost over IPsec ESP and the security benefits authentication provides.
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Figure 14. 95% Confidence Interval: Likely Exploit Scenario

4.4 Scenario Exploration

Section 4.3 applies the data gathered from this research to the cost function developed in
Section 4.2 using a particular set of scenario parameters defined as the Likely Exploit Scenario.
This section demonstrates the importance of selecting appropriate scenario parameters by
computing the cost function using the same measured data but with different scenario
parameters. The cost results for each additional scenario are compared with the Likely Exploit

Scenario.

4.4.1 Confidentiality Free Scenario. The Confidentiality Free Scenario is a small

deviation from the Likely Exploit Scenario in which the cost of losing confidentiality (sc) is set
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to 0. This represents a system in which there are no negative consequences if Mallory reads
information as long as she cannot modify it or inject false information. The remaining scenario

parameters are left unchanged and are specified in Table 15.

Table 15. Scenario Parameters: Confidentiality Free Scenario

Parameter Value Units

{d} {None, IPsec AH, IPsec ESP, IPsec AH+ESP} None

{e} {None, Passive Sniffing, None

ARP Cache Poisoning, TCP Connection Hijacking,
TCP Reset, TCP Connection Flooding}

PNone 1/6 None

PEaves 1/6 None

PARP 1/6 None

PHijack 1/6 None

PReset 1/6 None

PFlood 1/6 None

Sc 0 cost units

SI 1 cost units

Sa 1 cost units

SNone 0 cost units

SEaves Sc cost units

SARP Si cost units

SHijack SI cost units

SReset SA cost units

SFlood Sa cost units

ke 1/100 cost units

% utilization

kn 1/9018 cost units

Kbps

Using the scenario parameters for the Confidentiality Free Scenario (Table 15) and the

measured parameters (Tables 8, 9, and 10), the expanded cost function (6) is recomputed into

Table 16.
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Table 16. Cost Function Results: Confidentiality Free Scenario (cost units)

Factor Level None | IPsec AH IPsec ESP IPsec AH+ESP
None 0.0061 0.0065 0.0066 0.0074
Passive Sniffing 0.0061 0.0065 0.0066 0.0074
ARP Cache Poisoning 0.1743 0.0052 0.0094 0.0089
TCP Connection Hijacking 0.4583 0.0073 0.0063 0.0078
TCP Reset 0.1715 0.0070 0.0068 0.0075
TCP Connection Flooding 0.2355 0.0075 0.0083 0.0090
Total Cost 1.0518 0.0399 0.0439 0.0480

The standard error of the mean of the expanded cost function (Table 17) is calculated by

inputting the scenario parameters for the Confidentiality Free Scenario (Table 15) and the

measured parameters (Tables 8, 9, and 10) into the expanded propagation of uncertainty

function (7).

Table 17. Standard Error: Confidentiality Free Scenario (cost units)

Factor Level None IPsec AH | IPsec ESP | IPsec AH+ESP
None 4.851E-07 8.45TE-07 2.23E-06 3.597E-07
Passive Sniffing 1.347E-08 2.349E-08 6.19E-08 9.993E-09
ARP Cache Poisoning 3.332E-07 1.440E-07 5.13E-07 1.457E-08
TCP Connection Hijacking 0.001112307 1.764E-08 1.39E-08 8.692E-09
TCP Reset 2.234E-08 9.453E-10 8.92E-08 3.950E-08
TCP Connection Flooding 4.931E-07 9.796E-09 1.47E-07 1.539E-07
Total Variance of the mean, o 0.0011136 1.041E-06 3.05E-06 5.864E-07
Total Standard Error of the mean, oy 0.03337 0.00102 0.00175 0.00077

The 95% confidence interval for each defense protocol cost is calculated in Table 18 by

populating the 95% confidence interval equation for the mean (5) with the cost function results

(Table 16) and standard error (Table 17) for the Confidentiality Free Scenario.
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Table 18. 95% Confidence Interval: Confidentiality Free Scenario (cost units)

Nomne IPsec AH | IPsec ESP | IPsec AH+ESP
Lower 95% Limit 0.9864 0.0379 0.0404 0.0465
Mean 1.0518 0.0399 0.0439 0.0480
Upper 95% Limit 1.1172 0.0419 0.0473 0.0495

Figure 15 plots the 95% confidence intervals from Table 18 for all cases except when no

defense protocol is used. The case when no defense protocol is used is omitted because of its

relatively large value and to highlight the relationships between remaining defense protocols.

The stark difference between the Confidentiality Free Scenario and the Likely Exploit Scenario,

examined in Section 4.3, is that I[Psec AH, rather than IPsec AH-+ESP, results in the lowest

cost. This is expected since the only attack that is successful against it, passive sniffing,

imposes a security cost of confidentiality (sc), which is set to 0 in this scenario. For the

Confidentiality Free Scenario, IPsec AH is the preferred protocol due to its low overhead and

ability to defeat the consequential exploits.
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Figure 15. 95% Confidence Interval: Confidentiality Free Scenario
(None defense protocol omitted)
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4.4.2 Unlikely Exploit Scenario. The Unlikely Exploit Scenario differs from the Likely
Exploit Scenario by raising the likelihood that no exploit is used. This represents the scenario
in which it is very unlikely that Mallory will attempt to launch exploits. The probably that no
exploit is launched (pwone) is set to 0.999 and all other exploit probabilities are set to 0.001/5.
All other scenario parameters remain the same as the Likely Exploit Scenario, as shown in Table

19.

Table 19. Scenario Parameters: Unlikely Exploit Scenario

Parameter Value Units
{d} {None, IPsec AH, IPsec ESP, IPsec AH+ESP} None
{e} {None, Passive Sniffing, None
ARP Cache Poisoning, TCP Connection Hijacking,
TCP Reset, TCP Connection Flooding}
PNone 0.999 None
PEaves 0.001/5 None
ParP 0.001/5 None
PHijack 0.001/5 None
PReset 0.001/5 None
PFlood 0.001/5 None
Sc 1 cost units
SI 1 cost units
Sa 1 cost units
SNone 0 cost units
SEaves Sc cost units
SARP SI cost units
SHijack SI cost units
SReset Sa cost units
SFlood SA cost units
ke 1/100 cost units
% utilization
Ko 1/9018 cost units
Kbps

Using the scenario parameters for the Unlikely Exploit Scenario (Table 19) and the
measured parameters (Tables 8, 9, and 10), the expanded cost function (6) is recomputed into

Table 20.
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Table 20. Cost Function Results: Unlikely Exploit Scenario (cost units)

Factor Level None | IPsec AH IPsec ESP IPsec AH+ESP
None 0.0061 0.0065 0.0066 0.0074
Passive Sniffing 0.0061 0.0065 0.0066 0.0074
ARP Cache Poisoning 0.1743 0.0052 0.0094 0.0089
TCP Connection Hijacking 0.4583 0.0073 0.0063 0.0078
TCP Reset 0.1715 0.0070 0.0068 0.0075
TCP Connection Flooding 0.2355 0.0075 0.0083 0.0090
Total Cost 1.0518 0.0399 0.0439 0.0480

The standard error of the mean of the expanded cost function (Table 21) is calculated by

inputting the scenario parameters for the Confidentiality Free Scenario (Table 19) and the

measured parameters (Tables 8, 9, and 10) into the expanded propagation of uncertainty

function (7).

Table 21. Standard Error: Unlikely Exploit Scenario (cost units)

Factor Level None IPsec AH | IPsec ESP | IPsec AH+ESP
None 4.851E-07 8.45TE-07 2.23E-06 3.597E-07
Passive Sniffing 4.842E-07 8.440E-07 2.22E-06 3.590E-07
ARP Cache Poisoning 4.798E-13 2.074E-13 7.38E-13 2.098E-14
TCP Connection Hijacking 1.601E-09 2.541E-14 2.01E-14 1.251E-14
TCP Reset 3.217E-14 1.361E-15 1.28E-13 5.688E-14
TCP Connection Flooding 7101E-13 |  1.410E-14 2.12E-13 2.216E-13
Total Variance of the mean, o/ 9.710E-07 1.689E-06 4.45E-06 7.187E-07
Total Standard Error of the mean, o, 0.00099 0.00130 0.00211 0.00085

The 95% confidence interval for each defense protocol cost is calculated in Table 22 by

populating the 95% confidence interval equation for the mean (5) with the cost function results

(Table 20) and standard error (Table 21) for the Confidentiality Free Scenario.
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Table 22. 95% Confidence Interval: Unlikely Exploit Scenario (cost units)

None IPsec AH | IPsec ESP | IPsec AH+ESP
Lower 95% Limit 0.0361 0.0365 0.0354 0.0426
Mean 0.0380 0.0391 0.0396 0.0443
Upper 95% Limit 0.0399 0.0416 0.0437 0.0459

Figure 16 plots the 95% confidence interval of the mean for the cost function results

(Table 22) against each defense protocol. Compared with the results for the Likely Exploit

Scenario, using no defense protocol results in a lower cost than [Psec AH+ESP. This is a result

of the probability of no exploit being set so high (pnone = 0.999) that the CPU and network load

overheads begin to dominate the cost function output rather than the associated security costs.

Similar costs values result when the security costs (sc, si, and sa) are reduced to extremely low

levels. This highlights possible scenarios where adding authentication and encryption is not

ideal due the low probability of attack or low value of the information or service the system

provides.
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Figure 16. 95% Confidence Interval: Unlikely Exploit Scenario
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4.5 Application of Results

This section frames the results of this research within the wider context of network
security. Results support the case for authentication and encryption by default due to modern
hardware advances. Additionally, this research highlights the trend that as a Player system is
scaled to include additional hosts, it is expected that the network overhead introduced by IPsec
will become more consequential than the CPU overhead. Finally, results from this research
highlights potential weaknesses in the ability of application layer security protocols (e.g., SSL)
to protect against DoS attacks that target the TCP connection and supports the adoption of

transport layer protocols (e.g., tcperypt) to mitigate these weaknesses.

4.5.1 The Case for Authentication and Encryption by Default. This research supports
the findings of Caldera et al. and Argyroudis et al. that IPsec can be used to protect network
traffic of embedded devices with an acceptable cost to CPU utilization [CDN00, AVT04|. Note
that Section 3.8.1 specifies that SHA-256 and AES-256 were used as the cryptographic
algorithms. Both algorithms are highly regarded as secure by the cryptographic community.
The selected key sizes make brute force attacks against them infeasible today and represent the
highest computational cost an embedded device is likely to encounter. Analysis of the measured
CPU utilization (Table 9) finds that when no exploit is used, the CPU cost to run IPsec
AH-+ESP is only 0.52% utilization higher than without a defense protocol. As embedded
devices continue to become more powerful, the relative CPU overhead of authentication and

encryption algorithms will naturally continue to diminish.

This research also demonstrates the low resources needed to exploit an unprotected
protocol running over TCP/IP. Section 3.8.1 details the hardware specifications for Mallory: a
laptop released in 2007 running an open-source tool, Scapy. The TCP/IP attacks implemented

against Player for this research are publically available and any application layer protocol that
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does not employ some form of strong authentication and encryption is therefore assumed to be
equally vulnerable. Because advancements in hardware allow more devices to be capable of
authentication and encryption and the difficulty in attacking TCP/IP communication is
decreasing, authentication and encryption should become the default rather than the exception

for network protocol design.

4.5.2 Scaling: CPU vs. Network Overhead. Performance analysis data collected for a
single client-server pair running Player can be used to estimate the effects of scaling on system
performance. Consider that the number of independent client-server pairs is increased and that
each pair that is added to the system consists of another two devices with the same parameters
as the client (Alice) and server (Bob), detailed in Section 3.8. Independent client-server pairs
transmit over a shared medium but only communicate between pairs. Assume that each pair
independently generates the same workload of Player messages tested in this research. Also,
assume that Mallory does not launch exploits. Note that precise analysis of this problem would
require network simulation or experimentation, but an estimation of trends is still possible with

the data gathered in this research.

Each client-server pair added to the system introduces additional CPU resources that
can be used to perform the authentication and encryption algorithms necessary for IPsec to
protect communication. Since each client-server pair is independent in its communication, it is
estimated that the CPU overhead with respect to IPsec will not increase. In contrast, each
client-server pair added to the system does not introduce additional network resources. Since

each additional client-server pair consumes additional network resources, the network overhead

of IPsec becomes significant.
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The maximum independent client-server pairs that the system can support when no

exploit is used is estimated as,

nmax

For e = None: EstPairsy; =

(8)

e

Table 23 lists the estimated maximum number of independent client-server pairs that are
supported for each defense protocol. These results are calculated by inputting the maximum
network resource (nmax, Table 6) and the network load (ne, Table 10) of the system when no
exploit is used into (8). Note the trend that as IPsec adds more protection, the number of
independent client-server pairs the system can support decreases. The conclusion is that the
scaled system running with no defense protocol supports an estimated 64% more client-server
pairs than when it uses IPsec AH+ESP.

Table 23. Estimated Maximum Independent Client-Server Pairs

Factor Level None IPsec AH | IPsec ESP IPsec AH+ESP
None 253 201 183 154

The large performance penalty results from an increase in the average packet size that
IPsec introduces. The average packet size (Table 11) increases by 64% when IPsec AH+ESP is
employed. A slight difference between the average packet size and estimated maximum pairs is
explained by the small number of packets transmitted at the data-link layer, which are not
affected by IPsec.

Figure 17 depicts the relationship between the estimated number of client-server pairs
and the average packet size. It bears repeating that the number of client-server pairs is only an
estimation, and simulated or experimental data is needed to draw more precise conclusions.

This trend is substantial because Player communicates using a relatively small average packet

size of 94 bytes.
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Figure 17. Client-Server Pairs vs. Average Packet Size

As the average packet size for an application increases, the average overhead introduced
by IPsec AH+ESP (60 bytes) becomes insignificant. For example, an application with an
average packet size of 1500 bytes (the maximum transmission unit of Ethernet) would incur an
estimated average packet size increase of only 4% running IPsec AH+ESP. As a result, it is
expected that the system would only lose an estimated 4% of the maximum supported pairs.

In summary, results predict that when scaled independently, network overhead, not CPU
overhead, is the limiting factor. In addition, the smaller the average packet size of an
application is, the higher the relative network overhead of IPsec.

4.5.3 Internet Client-Server Applications. The Player protocol studied in this research is
only one of many application layer protocols that run over TCP/IP. However, the
vulnerabilities that are demonstrated can be applied to a wider set of protocols. Any TCP/IP
protocol that does not employ some form of strong authentication and encryption is potentially
vulnerable to the exploits implemented in this research. This research reveals that embedded

devices are at least as vulnerable as desktop systems with respect to the network stack when
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they communicate using the same insecure protocols. In some ways, embedded devices are more
vulnerable as demonstrated by the TCP connection flooding DoS attack. Embedded devices,
such as Player robots, acting as servers typically possess fewer computing and memory resources

and thus can be overwhelmed more easily.

SSL is the de facto protocol to provide process-to-process security over the Internet for
client-server applications. Two of the exploits demonstrated in this research, TCP connection
hijacking and TCP reset, compromise weaknesses in the TCP protocol. These weaknesses arise
because the TCP header is not authenticated, allowing Mallory to modify information related to
the TCP connection without Alice or Bob’s knowledge. Because SSL is an application layer
protocol, it is not able to authenticate the TCP header, making it vulnerable to DoS attacks
that target the TCP connection. Watson demonstrates that TCP reset can be used to attack a
TCP/IP protocol that does not authenticate the TCP header [Wat04]. Another disadvantage of
SSL is that applications must be modified to support SSL, adding complexity and development

cost to these Internet applications.

IPsec is able to authenticate the TCP header, defeating the TCP DoS attacks described
in the preceding paragraph, but it provides only machine-to-machine, rather than process-to-
process, security. The disadvantage is that [Psec cannot authenticate users, only machines. For
example, IPsec cannot distinguish between multiple Player clients on the same machine. In
addition, IPsec does not interoperate over Network Address Translation (NAT) which is a
popular technique used to extend IPv4 addresses. NAT could be needed in a mobile

environment when Player is actually deployed with [Pv4.

Teperypt, described in Section 2.3.3, mitigates many of the disadvantages that SSL and
[Psec possess. It provides authentication to the TCP header, protection to any application layer

protocol, and process-to-process security. By authenticating the sequence number, shown in
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Figure 18, tcperypt defeats TCP connection hijacking, and by authenticating the flags, tcperypt
defeats TCP reset. Because tcperypt operates in the transport layer, it requires less
modification to applications than SSL. Tcpcerypt also interoperates with NAT, allowing Player
to utilize this technology if needed. Therefore because of these advantages, tcpcrypt deserves
attention from the security community as a mechanism to provide more protection to TCP/IP

applications than is currently available.

src port | dst port
202 (64-bit seq) |
ack no. _(64-bit ack) _j
d.off [flags| window |checksum | urg. ptr.
options (e.g., SACK) MAC option
data (encrypted) _ 1P length

Figure 18. Data Packet Using Tcperypt [BHH10].

4.6 Analysis and Results Summary

This chapter analyzes the results of the experiments defined in Chapter 3 to accomplish
the research goals of this thesis. A cost function is defined to quantify the performance and
security cost associated with running a defense protocol for protection against exploitation.
Measured data is input to the cost function to determine the defense protocol with least cost.
Under the Likely Exploit Scenario, I[Psec AH+ESP is found to be the preferred defense protocol
because of its relatively low CPU and network performance costs and its ability to defeat all the
exploits implemented in this research. Two additional scenarios are explored to demonstrate the
flexibility of the cost function for different use-cases. Results support the case for
authentication and encryption of TCP/IP communication by default and highlight potential
challenges of using IPsec for systems that must scale to many hosts sending small packets. This
research identifies tcperypt as a security protocol of interest for client-server applications that
communicate over TCP/IP because of its unique ability to avoid some of the disadvantages

associated with IPsec and SSL.
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V. Conclusions and Recommendations
5.1 Thesis Summary
The following three research goals are presented in Chapter 3 and accomplished in the

analysis provided in Chapter 4.

1) Demonstrate the vulnerability of the Player protocol to network attacks.

This thesis demonstrates that the Player protocol is vulnerable to attacks on all three
principles of the CIA security model. Results show that an attacker can eavesdrop on position
data sent from the robot (Player server) to the command station (Player client). In addition,
Player is vulnerable to man-in-the-middle attacks that allow an attacker to violate the integrity
of the position data sent from the robot to the command station. Finally, this research
demonstrates that Player is vulnerable to denial-of-service attacks that compromise the

availability of the command station to command and control the robot.

2) Demonstrate the effectiveness of IPsec to secure the Player protocol.

Experimental results demonstrate that IPsec AH is capable of securing Player against
the attacks against integrity, and availability implemented in this thesis. IPsec ESP with no
optional authentication defeated attacks against confidentiality, integrity, and availability but is
not recommended due to published vulnerabilities of its own [Bel96, PaY06]. Results show that
IPsec AH-+ESP provides the highest level of security because it defeats all of the exploits

implemented in this research and has no published weaknesses.

3) Quantify the cost of IPsec to secure the Player protocol.

Metrics gathered from this research show that mobile devices are well equipped to secure
Player-like command and control communication with IPsec. IPsec AH+ESP increased the

CPU utilization by just 0.52% and the network load by 22.9Kbps (64.3% increase). Results

70

www.manharaa.com



from the cost function, defined in Section 4.2, show that for the Likely Exploit Scenario, [Psec
AH+ESP is the preferred defense protocol because of its ability to defeat exploits and relatively
low overhead. For the Confidentiality Free Scenario, [IPsec AH is found to be the optimal
defense protocol because it defeats integrity and availability exploits implemented in this
research. Finally, in the Unlikely Exploit Scenario, using no defense protocol results in the
lowest cost because the probability of attack in this scenario is miniscule. The low probability

of attack causes the overhead of [Psec in the cost function to become significant.

When results are applied to the wider field of network security, three areas are
highlighted. First, this research demonstrates the low capabilities needed for an attacker to
compromise an unprotected protocol running over TCP/IP and that modern mobile devices are
easily capable of authenticating and encrypting network communication. As a result, this
research supports that authentication and encryption become the default rather than the
exception for network communication of mobile devices. Second, this research finds that the
network overhead, not CPU overhead, of IPsec is expected to be a limiting factor when the
system is scaled. Because Player communicates with a low average packet size the network
overhead of IPsec is relatively large (63.8% increase compared to no defense protocol). Finally,
the TCP denial-of-service attacks implemented in this research are expected to be effective
against SSL because it cannot authenticate the TCP header. Tcpcrypt is identified as a
protocol of interest that defeats such attacks while avoiding some of the disadvantages

associated with SSL and IPsec.

5.2 Recommendations for Future Research

This section describes future research to extend this thesis.

e Performance analysis using a wireless network would be beneficial as this is likely

how a Player system would be actually deployed. A wireless environment would
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make it possible to realistically measure the effects of scaling on system
performance when IPsec is deployed. In addition, the attacker’s resources could
also be scaled to determine how this affects the effectiveness of attacks.

e Power consumption data is excluded from analysis because the data correlated
redundantly with the CPU utilization metric in this experimental configuration.
The software and hardware design provided in this thesis to characterize the
power consumption of a Player device is applicable to wireless environments.
Characterizing the power consumption of a CPU and wireless NIC together under
different protocols would be of interest. Power consumption data could then be
integrated into the cost function developed in Chapter 4.

e The methodology detailed in Chapter 3 of measuring the performance of the
system with respect to defense protocols and exploits could be used to detect and
identify attacks. A methodology could be developed to create signatures that
bind an exploit to a certain set of metric values.

e Performance analysis of SSL and tcperypt’s ability to secure Player
communication would be of interest. When employing SSL, Player could be
shown to remain vulnerable to certain denial-of-service attacks. By mitigating

these vulnerabilities, the advantage of using tcperypt would be demonstrated.

5.3 Final Thoughts

Results of this thesis reiterate and underscore the dangers of performing command and
control or any sensitive communication over TCP/IP without authentication and encryption. A
fundamental shift away from this type of protocol design must be enacted. Rather than
plaintext by default protocols, software engineers must incorporate end-to-end security solutions

such as [Psec, SSL, or tcperypt, which is currently under review. Modern hardware advances
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make such a fundamental change feasible. This shift would significantly reduce the ability for

malicious users to perform network attacks.
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Appendix A: Player Protocol Wireshark Dissector Source Code

#ifdef HAVE CONFIG H
# include "config.h"
#endif

#include <epan/packet.h>

/*********** Player Defines **************************/

/*x**** Message Type Defines ****xx/
#define PLAYER MSGTYPE DATA 1
#define PLAYER MSGTYPE CMD 2
$define PLAYER MSGTYPE REQ 3
#define PLAYER MSGTYPE RESP ACK 4
#define PLAYER MSGTYPE SYNCH 5
#define PLAYER MSGTYPE RESP NACK 6

/***%* Device Interface Defines *x**%x/
#define PLAYER PLAYER CODE 1

#define PLAYER POWER_CODE 2

#define PLAYER GRIPPER_CODE 3

#define PLAYER POSITION2D CODE 4

/*** Player Device Interface Subtypes ***/

/* Defined in libplayerinterface\player interfaces.h */
/** Player:Request Subtypes **/

#define PLAYER PLAYER REQ DEVLIST 1

#define PLAYER PLAYER REQ DRIVERINFO 2
#define PLAYER PLAYER REQ DEV 3

#define PLAYER PLAYER REQ DATA 4

#define PLAYER PLAYER REQ DATAMODE 5

#define PLAYER PLAYER REQ AUTH 7

#define PLAYER PLAYER REQ NAMESERVICE 8
#define PLAYER PLAYER REQ ADD REPLACE RULE 10

/** Player:Synch Subtypes **/

#define PLAYER PLAYER SYNCH OK 1
#define PLAYER PLAYER SYNCH OVERFLOW 2
/** Payload Player:Request:Datamode **/

#define PLAYER DATAMODE PUSH 1
#define PLAYER DATAMODE PULL 2

/***x Position2d Device Interface Subtypes ***x/
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/*** PO
#define
#define
#define
#define
#define
#define
#define
#define
#define

sition2d:Request Subtypes ***/

PLAYFR POSITION2D REQ GET GEOM 1
PLAYER POSITION2D REQ MOTOR POWER 2
PLAYER_POSITION2D_REQ_VELOCITY_MODE 3
PLAYER_POSITIONZD_REQ_POSITION_MODE 4
PLAYER POSITION2D REQ SET ODOM 5
PLAYER POSITION2D REQ RESET ODOM 6
PLAYER_POSITION2D_REQ_SPEED_PID 7
PLAYER_POSITIONZD_REQ_POSITION_PID 8
PLAYER POSITION2D REQ SPEED PROF 9

/** Position2d:Data Subtypes ***/
#define PLAYER POSTTION2D DATA STATE 1
#define PLAYER POSITION2D DATA GEOM 2

/** Position2d:Command Subtypes */
#define PLAYER POSITION2D CMD VEL 1
#define PLAYER POSITION2D CMD_POS 2

#define PLAYER POSITION2D CMD CAR 3
#define PLAYER POSITION2D CMD VEL HEAD 4

/*********** Player ‘Defines **************************/

#define PLAYER PORT 6665
static int proto_player = -1;

/* hf_* variables are used to hold the Wireshark IDs of

* our h
* proto
*/

static
static
static
static
static
static
static
static
static
static
static
static

eader fields; they are filled out when we call

register field array() in proto register player()

int hf player header = -1;

int hf player header host = -1;

int hf player header_ robot = -1;

int hf player header_interface = -1;

int hf player_ header_index = -1;

int hf player header type = -1;

int hf player header subtype = -1;

int hf player header subtype player req = -1;

int hf player header subtype player synch = -1;
int hf player header subtype position2d reqg = -1;
int hf player header subtype position2d data = -1;
int hf player header subtype position2d cmd = -1;
i imestamp = -1;

75

www.maharaa.com



static int
static int

static int

/* Payload
static int

/* Payload
static int

/* payload position2d data

static int
static int

hf player header sequencenumber = -1;
hf player header payloadsize = -1;

hf player payload = -1;

Player:Request:Datamode */
hf player payload player datamode = -1;

Player:ResponseAck:Device */
hf player payload player respack device name = -1;

(also includes payload position2d cmd vel
hf player payload position2d data px
hf player payload position2d data py = -1;

Il
|
iy
~

static int hf player payload position2d data pa = -1;

/* payload_position2d_cmd vel */

static int hf player payload position2d cmd vel vx = -1;

static int hf player payload position2d cmd vel vy = -1;

static int hf player payload position2d cmd vel va = -1;

static int hf player payload position2d cmd vel motorstate = -1;

/* IDs of the subtrees that may be created */

static int
static int
static int

ett player = -1;
ett player header = -1;
ett player payload = -1;

/* Enumeration Labels */
static const value string header interface names[] =

{

{PLAYER PLAYER CODE, "Player"},

{PLAYER POWER CODE, "Power"},

{PLAYER GRIPPER CODE, "Gripper"},
{PLAYER POSITION2D CODE, "Position2D"},

{OI

}i

NULL}

static const value string header messagetype names[]=

{

{PLAYER_MSGTYPE_DATA, "Data"},
{PLAYER_MSGTYPE_CMD, "Command"},
{PLAYER_MSGTYPE_REQ, "Request"},

{PLAYER MSGTYPE RESP_ACK, "Response-Ack"},

AYER M PE_R NACK,

{PLAYER MSGTYPE SYNCH, "Synch"},

"Response-NegAck"},
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{0, NULL}

/****%xx% PLAYER PLAYER CODE Device Interface Subtypes ******xxi+/
/**** Player:Request, Subtypes ****/
static const value_string header_ subtype player req names[]=
{
{PLAYER PLAYER REQ DEVLIST, "Device List"},
{PLAYER PLAYER REQ DRIVERINFO, "Driver Info"},
{PLAYER_PLAYER REQ DEV, "Device"},
{PLAYER_PLAYER REQ DATA, "Data"},
{PLAYER PLAYER REQ DATAMODE, "Datamode"},
{PLAYER_PLAYER REQ AUTH, "Auth"},
{PLAYER PLAYER REQ NAMESERVICE, "Nameservice"},
{PLAYER PLAYER REQ ADD REPLACE RULE, "Add/Replace Rule"},
{0, NULL}
bi
/**%** Player:Synch, Subtypes ***x/
static const value string header subtype player synch names[]=
{
{PLAYER PLAYER SYNCH OK, "OK"},
{PLAYER PLAYER SYNCH OVERFLOW, "Overflow"},
{0, NULL}

/**x*%xx* PLAYER PLAYER CODE Device Interface Subtypes ****x**x¥*/
/**%*% Position2D:Request, Subtypes ****/
static const value string header subtype position2d req names[]=
{
{PLAYER POSITION2D REQ GET GEOM, "Get Geometry"},
{PLAYER POSITION2D REQ MOTOR POWER, "Motor Power"},
{PLAYER POSITION2D REQ VELOCITY MODE, "Velocity Mode"},
{PLAYER_POSITION2D REQ POSITION MODE, "Position Mode"},
{PLAYER _POSITION2D REQ SET ODOM, "Set Odom"},
{PLAYER POSITION2D REQ RESET ODOM, "Reset Odom"},
{PLAYER _POSITION2D REQ SPEED PID, "Speed PID"},
{PLAYER POSITION2D REQ POSITION PID, "Position PID"},
{PLAYER POSITION2D REQ SPEED PROF, "Speed Profile"},
{0, NULL}

bi
/**%*% Position2D:Data, Subtypes ***x*/
static const value string header subtype position2d data names[]=

{

{PLAYER_POSITION2D_DATA_STATE, "State"},
GEOM, "Geometry"},
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(0, NULL}

)i

/**%** Position2D:Command, Subtypes ****/

static const value_string header_ subtype position2d _cmd names|[]=

{
{PLAYER POSITION2D CMD_VEL, "Velocity"},
{PLAYER POSITION2D CMD_POS, "Position"},
{PLAYER POSITION2D CMD_CAR, "Car-like"},
{PLAYER POSITION2D CMD_VEL HEAD, "Heading"},
{0, NULL}

)i

/*************** PAYLOAD Enumeration Labels *****************************/
/* Player:Request:Datamode */
static const value string payload player datamode names[]=
{
{PLAYER DATAMODE PUSH, "Push"},
{PLAYER DATAMODE PULL, "Pull"},
{0, NULL}

/* Dissector function for the Player Protocol */
/* The Dissector is called in two different cases, one to get a
summary of the packet (tree==NULL), and one to get details of the packet */
/* tvb: buffer to hold packet data
pinfo: contains general info about the protocol
tree: detailed dissection */
static void dissect player (tvbuff t *tvb, packet info *pinfo, proto tree *tree)
{
/* Offset tracks the location of the current item added to the tree */
gint offset = 0;

guint device interface = 0;
guint message type = 0;
guint message subtype = 0;
guint payload size = 0;

/* Set column text to protocol name */
col set str(pinfo->cinfo, COL PROTOCOL, "PLAYER");

/* Clear out stuff in the info column */
col clear (pinfo->cinfo,COL_INFO) ;

/* Update the info column with header information */
i i get ntohl (tvb, 8); /* Defined in tvbuff.h */
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message_type =

tvb get ntohl (tvb, 16);

message_subtype = tvb get ntohl (tvb, 20);

payload_size = tvb_get ntohl (tvb, 36);

col_add fstr(pinfo->cinfo, COL_INFO, "Inter: %s, Type: %s, Payload Len: %d",
val to_str(device_ interface, header interface names, "Unknown (0x%02x)"),
val to_str (message_type, header messagetype names, "Unknown (0x%02x)"),

/* When
if (tree

{

payload_size

)i

tree != NULL,

!= NULL)

proto_item *player item = NULL;
proto_item *player header item = NULL;
proto_item *player payload item = NULL;
proto_tree *player tree = NULL;
proto_tree *player header_ tree = NULL;
proto_tree *player payload tree = NULL;

/* Add a new tree node,
/* from beginning (0) (-1). */
player item = proto_tree add item(tree,

to end

label with Player protocol,

this is main asking for details of the packet */

tvb=data, consume */

proto_player, tvb, 0, -1, FALSE);

/* Add a Player subtree to the new Tree Node */

player tree =

proto_item add subtree(player item, ett player);

/* Add a Header subtree to the Player Tree */

/* Headers are 40bytes long */
player header item =
player header tree =

/* Add Header items */

proto _tree add item(player header tree,
offset+=4;

proto _tree add item(player header tree,
offset+=4;

proto tree add item(player header tree,
offset+=4;

proto tree add item(player header tree,
offset+=4;

proto tree add item(player header tree,
offset+=4;

proto_tree add item(player tree, hf player header, tvb, offset,

40, FALSE);

proto_item add subtree(player header item, ett player header);

hf player header host, tvb, offset, 4, FALSE);

hf player header robot, tvb, offset, 4, FALSE);

hf player header interface, tvb, offset, 4, FALSE);

hf player header index, tvb, offset, 4, FALSE);

hf player header type, tvb, offset, 4, FALSE);

/* The Header Message Subtype is defined based on the Device Interface and Message Type*/

*/
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switch(device interface)
{
case PLAYER PLAYER CODE:
switch (message_type)
{
case PLAYER MSGTYPE_REQ:
proto_tree add item(player header_ tree, hf player header subtype player req, tvb, offset,
4, FALSE);
break;
case PLAYER MSGTYPE_SYNCH:
proto_tree add item(player header tree, hf player header subtype player synch, tvb,
offset, 4, FALSE);
break;
case PLAYER MSGTYPE RESP ACK: /* Uses same subtypes as Request Message Type */
proto_tree add item(player header tree, hf player header subtype player req, tvb, offset,
4, FALSE);
break;
default: /* Use generic subtype */
proto_tree add item(player header tree, hf player header subtype, tvb, offset, 4, FALSE);
break;
}

break;

case PLAYER POWER_CODE:
break;

case PLAYER GRIPPER CODE:
break;

case PLAYER POSITION2D CODE:
switch (message type)
{
case PLAYER MSGTYPE REQ:
proto_tree add item(player header tree, hf player header subtype position2d req, tvb,
offset, 4, FALSE);
break;
case PLAYER MSGTYPE DATA:
proto _tree add item(player header tree, hf player header subtype position2d data, tvb,
offset, 4, FALSE);
break;
case PLAYER MSGTYPE CMD:
proto tree add item(player header tree, hf player header subtype position2d cmd, tvb,

offset, 4, FALSE);

break;
default: /* Use generic subtype */
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proto tree add item(player header tree, hf player header subtype, tvb, offset, 4, FALSE);
break;
}
break;
default: /* If device interface is other than one defined above, display generic version */
proto_tree add _item(player header_ tree, hf player header_ subtype, tvb, offset, 4, FALSE);
break;
}
offset+=4;
proto_tree add item(player header tree, hf player header timestamp, tvb, offset, 8, FALSE);
offset+=8; /* Double = 8 bytes */
proto_tree add item(player header tree, hf player header sequencenumber, tvb, offset, 4, FALSE);
offset+=4;
proto_tree add item(player header tree, hf player header payloadsize, tvb, offset, 4, FALSE);
offset+=4;

/* Add text summary for dissection window */
proto_item append text (player item, ", Inter: %s, Type: %s, Payload Len: %d",
val to_str(device interface, header interface names, "Unknown (0x%02x)"),
val_to_str (message_ type, header messagetype names, "Unknown (0x%02x)"),
payload size

)i

/* If a Payload is present, add a Payload subtree to the Player Tree */
/* The Payload comprises whatever data (if any) is present after the 40 byte header */
if (tvb_length (tvb) > 40) /* Defined in tvbuff.h */
{
player payload item

proto _tree add item(player tree, hf player payload, tvb, 40, -1, FALSE);
player payload tree = proto_item add subtree(player payload item, ett player payload);

switch (device interface)

{

case PLAYER PLAYER CODE:
switch (message_ type)
{
case PLAYER MSGTYPE REQ:
switch (message subtype)
{
case PLAYER PLAYER REQ DEVLIST:
break;

case PLAYER PLAYER REQ DRIVERINFO:
break;
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case PLAYER PLAYER REQ DEV: /* Uses similar data format

proto_tree add item(player payload tree,
hf player header_host, tvb, offset, 4, FALSE);

offset+=4;

proto_tree add item(player payload tree,
hf player header_robot, tvb, offset, 4, FALSE);

offset+=4;

proto_tree add item(player payload tree,
hf player header interface, tvb, offset, 4, FALSE);

offset+=4;

proto_tree add item(player payload tree,
hf player header index, tvb, offset, 4, FALSE);

offset+=4;

proto_tree add item(player payload tree,
hf player header index, tvb, offset, 4, FALSE);

offset+=4;

proto_tree add item(player payload tree,
hf player header index, tvb, offset, 4, FALSE);

offset+=4;

proto_tree add item(player payload tree,
hf player header index, tvb, offset, 4, FALSE);

offset+=4;

break;

case PLAYER PLAYER REQ DATA:
break;

case PLAYER PLAYER REQ DATAMODE:
proto_tree add item(player payload tree,
hf player payload player datamode, tvb, offset, 4, FALSE);
offset+=4;
break;

case PLAYER PLAYER REQ AUTH:
break;

case PLAYER PLAYER REQ NAMESERVICE:
break;

case PLAYER PLAYER REQ ADD REPLACE RULE:
break;
}

break;

case PLAYER MSGTYPE RESP ACK:
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switch (message subtype)
{
case PLAYER PLAYER REQ DEV: /* Uses similar data format to header

*/

proto_tree add item(player payload tree,
hf player header_host, tvb, offset, 4, FALSE);

offset+=4;

proto_tree add item(player payload tree,
hf player header_robot, tvb, offset, 4, FALSE);

offset+=4;

proto_tree add item(player payload tree,
hf player header interface, tvb, offset, 4, FALSE);

offset+=4;

proto_tree add item(player payload tree,
hf player header index, tvb, offset, 4, FALSE);

offset+=4;

proto_tree add item(player payload tree,
hf player header index, tvb, offset, 4, FALSE);

offset+=4;

proto_tree add item(player payload tree,
hf player header index, tvb, offset, 4, FALSE);

offset+=4;

proto_tree add item(player payload tree,
hf player header index, tvb, offset, 4, FALSE);

offset+=4;

proto_tree add item(player payload tree,
hf player payload player respack device name, tvb, offset, -1, FALSE);

/* offset+=4; Rest of payload is a string containing the

device name */

break;

break;

}

break;

case PLAYER POWER_CODE:
break;

case PLAYER GRIPPER CODE:
break;

case PLAYER_POSITIONZD_CODE:
switch (message type)

{
case PLAYER MSGTYPE DATA:
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tvb,

tvb,

tvb,

tvb,

tvb,

tvb,

offset,

offset,

offset,

offset,

offset,

offset,

FALSE) ;

FALSE) ;

FALSE) ;

FALSE) ;

FALSE) ;

FALSE) ;

/* Payload: player position2d data */
proto_tree add item(player payload tree,

offset+=8;
proto_tree add item(player payload tree,

offset+=8;
proto_tree add item(player payload tree,

offset+=8;
proto_tree add item(player payload tree,

offset+=8;
proto_tree add item(player payload tree,

offset+=8;
proto_tree add item(player payload tree,

offset+=8;
proto_tree add item(player payload tree,

hf player payload position2d cmd vel motorstate, tvb, offset, 4, FALSE);

tvb,

tvb,

tvb,

offset,

offset,

offset,

8,

8,

8,

FALSE) ;

FALSE) ;

FALSE) ;

offset+=4;
break;

case PLAYER MSGTYPE CMD:

proto_tree add item(player payload tree,

offset+=8;
proto_tree add item(player payload tree,

offset+=8;
proto_tree add item(player payload tree,

offset+=8;
proto_tree add item(player payload tree,

hf player payload position2d cmd vel motorstate, tvb, offset, 4, FALSE);

offset+=4;
break;
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/* Registers the protocol with Wireshark */
void proto_register player(void)
{
/* A header field is something you can search/filter on.
*
* We create a structure to register our fields. It consists of an
* array of hf register info structures, each of which are of the format
* {&(field id), {name, abbrev, type, display, strings, bitmask, blurb, HFILL}}.
*/
static hf register_info hf[] =
{
/* HEADER SECTION */
/* FT_* defined in ftypes.h */
{
&hf player header,
{
"Header", "player.header",
FT_NONE, BASE_NONE,
NULL, 0x0, "Player Header", HFILL

&hf player payload,

{
"Payload", "player.payload",
FT_NONE, BASE NONE,
NULL, 0x0, "Player Payload", HFILL

&hf player header host,

{
"Device Host", "player.devicehost",
FT_IPv4, BASE_NONE,
NULL, 0x0, NULL, HFILL

&hf player header robot,
{

"Device Robot", "player.devicerobot",
FT_UINT32, BASE_ DEC,
LL, 0x0, NULL, HFILL
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&hf player header interface,

{
"Device Interface", "player.interface",
FT_UINT32, BASE DEC,
header interface names, 0x0, NULL, HFILL

&hf player header index,

{
"Device Index", "player.index",
FT _UINT32, BASE DEC,
NULL, 0x0O, NULL, HFILL

&hf player header type,
{
"Type", "player.type",
FT _UINT32, BASE DEC,
header messagetype names, 0x0, NULL, HFILL

by
{ /* Need to create multiple messagesubtype definitions. Each Device Interface */
/* Defines its own message subtypes for each message type defines */
&hf player header subtype, /* Generic message subtype def */
{
"Subtype", "player.subtype",
FT_UINT32, BASE DEC,
NULL, 0x0, NULL, HFILL

&hf player header subtype player req,
{

"Subtype", "player.subtype.player.req",
FT_UINT32, BASE_DEC,
header subtype player req names, 0x0, NULL, HFILL

shf player header subtype player synch,
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"Subtype", "player.subtype.player.synch",
FT_UINT32, BASE DEC,
header_subtype player synch names, 0x0, NULL, HFILL

&hf player header subtype position2d regq,

{
"Subtype", "player.subtype.position2d.req",
FT_UINT32, BASE DEC,
header subtype position2d req names, 0x0O, NULL, HFILL

&hf player header subtype position2d data,

{
"Subtype", "player.subtype.position2d.data",
FT_UINT32, BASE DEC,
header subtype position2d data names, 0x0, NULL, HFILL

&hf player header subtype position2d cmd,

{
"Subtype", "player.subtype.position2d.cmd",
FT_UINT32, BASE DEC,
header subtype position2d cmd names, 0x0O, NULL, HFILL

&hf player header_ timestamp,

{
"Timestamp", "player.timestamp",
FT_DOUBLE, BASE_NONE,
NULL, 0x0, NULL, HFILL

&hf player header sequencenumber,

{

"Sequence Number", "player.sequencenumber",
FT_UINT32, BASE_ DEC,
NULL, 0x0, NULL, HFILL
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&hf player header payloadsize,

{
"Payload Size", "player.payloadsize",
FT_UINT32, BASE DEC,
NULL, 0x0O, NULL, HFILL

/*********************** PAYLOAD SECTION **********************************************/

/****** Player:Request:Datamode ******xx/
{
&hf player payload player datamode,
{
"Data Mode", "player.payload.player.datamode",
FT _UINT32, BASE NONE,
payload player datamode names, 0x0, NULL, HFILL

}I

/**%*%*%x Player:Response-Ack:Device ****xxxx%/

{

&hf player payload player respack device name,

{
"Name", "player.payload.player.respack.device.name",
FT _STRINGZ, BASE NONE,
NULL, 0x0, NULL, HFILL

}I

/******************** DATA TYPE SECTION **********************/

/* Position2d: player position2d data */
{

&hf player payload position2d data px,

{
"PositionX (m)", "player.payload.position2d data.px",
FT_DOUBLE, BASE_NONE,
NULL, 0x0, NULL, HFILL

&hf player payload position2d data py,
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"PositionY (m)", "player.payload.position2d data.py",
FT_DOUBLE, BASE_NONE,
NULL, 0x0O, NULL, HFILL

&hf player payload position2d data pa,

{
"PositionA (rad)", "player.payload.position2d data.pa",
FT_DOUBLE, BASE_NONE,
NULL, 0x0O, NULL, HFILL

/********************* CMD TYPE SECTION **********************/

/* Position2d: player position2d cmd vel */

{

&hf player payload position2d cmd vel vx,

{
"VelocityX (m/s)", "player.payload.position2d cmd vel.vx",
FT_DOUBLE, BASE_NONE,
NULL, 0x0O, NULL, HFILL

&hf player payload position2d cmd vel vy,

{
"VelocityY (m/s)", "player.payload.position2d cmd vel.vy",
FT_DOUBLE, BASE_NONE,
NULL, 0x0, NULL, HFILL

&hf player payload position2d cmd vel va,

{
"VelocityA (rad/s)", "player.payload.position2d cmd vel.va",
FT_DOUBLE, BASE_NONE,
NULL, 0x0, NULL, HFILL

&hf player payload position2d cmd vel motorstate,

89

www.maharaa.com



"Motor State", "player.payload.position2d cmd vel.motorstate",

FT_UINT32, BASE DEC,
NULL, 0Ox0, NULL, HFILL

}i

/* Setup protocol subtree array */
static gint *ett[] =
{

&ett player,

&ett player header,

&ett player payload
}i

Short Name, Abbrev) */

/* Registers protocol. Format: (Name,
"Player", "player"):;

proto_player = proto_register protocol ("Player Protocol",

proto_register field array(proto_player, hf, array length(hf));
proto_register subtree array(ett, array length(ett));

/* Creates a dissector handle for main program to call */
void proto reg handoff player (void)

{

static dissector_handle t player handle;

/* Create a dissector handle associate with the player protocol and with
a routine to be called to dissect it*/
player handle = create dissector handle(dissect player, proto player);
/*Associate the player handle with a TCP port number so that the main
program will know to call us when TCP traffic arrives on that port*/

dissector add uint ("tcp.port", PLAYER PORT, player handle);
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Appendix B: IPsec Security Associations

E R i
## IPsec Configuration for Player Defense System

## John Hagen

## Masters in Cyber Operations AFIT/ENG AFRL/RYWC
R

#H#### #4444 Flush the SAD and SPD ##########H##H4H4HH4HH4HHHHHEHH4HH
flush;
spdflush;

###H####### Security Associations AH SHA256-256 bit key ########H#####

add 192.168.1.2 192.168.1.3 ah 0x200 -A hmac-sha256
0x8d375a74b4a2c70d36dc9c6de2179¢c4493£30034ef3c3682afbbbe2b60bfd2e9;

add 192.168.1.3 192.168.1.2 ah 0x300 -A hmac-sha256
0xb037b7c2a619fb0987bff4708eef2fb328c79%aeflc26fddd46£2138a493c8708;

#HH#HF#H#HHF Security Associations ESP AES-256 bit key #########4F4#4#

add 192.168.1.2 192.168.1.3 esp 0x201 -E aes-cbc
0x25ea0b76e21f20acab36da6642feb056£e98£14439002db25091b13a5b85a75b;

add 192.168.1.3 192.168.1.2 esp 0x301 -E aes-cbc
0x5e3bebefdaeca58e98433e7b7824e6950756012e81aadd38509c5fb5cc7c3bdab;

## To add authentication directly to ESP rather than use in conjunction with

AH add:

## -A hmac-sha256

## <SHA256 key>

#H###44#4## Security Policies - AH Only ########4444H4f4HHH4H4HFHFHEH
## Require IPsec for all IP communication
##spdadd 255.255.255.255/0 255.255.255.255/0 any -P out ipsec

#4 ah/transport//require;

##

##spdadd 255.255.255.255/0 255.255.255.255/0 any -P in ipsec
#4 ah/transport//require;

#H## 444444 Security Policies - ESP Only #######4#4#H4###4#4H444444HH4HH
## Require IPsec for all IP communication
##spdadd 255.255.255.255/0 255.255.255.255/0 any -P out ipsec

## esp/transport//require;

##

##spdadd 255.255.255.255/0 255.255.255.255/0 any -P in ipsec
## esp/transport//require;

#H#fH#FFHHF Security Policies - AH+ESP #######Fd##FdddFadddaaadsaadads
## Require IPsec for all IP communication

##spdadd 255.255.255.255/0 255.255.255.255/0 any -P out ipsec

#4 esp/transport//require

#4 ah/transport//require;

##

##spdadd 255.255.255.255/0 255.255.255.255/0 any -P in ipsec
## esp/transport//require

#4 ah/transport//require;
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Appendix C: Configuration Instructions

Alice:
1) Download Ubuntu Desktop 11.10 32-bit ISO
a. http://www.ubuntu.com/download /ubuntu/download
2) Burn the ISO file to a CD and boot with the CD to install Ubuntu 11.10.
3) Install Ubuntu 11.10
a. Select Download updates while installing.

b. Do not install third party applications.
4) Open the Update Manager
a. Install all important security updates.
b. Do not update to a newer version of Ubuntu if available.
c. Restart the computer.
5) Open the Ubuntu Software center
a. Search for and install Synaptic Package Manager
6) Open Synaptic Package Manager and install the following packages:
a. robot-player 3.0.2
b. ipsec-tools 0.7.3
c. ckermit 211-14 (To interact with the Overo Console via USB)
7) Open Terminal
a. sudo nautilus
b. Open /etc/network/interfaces with gedit. Add the following lines:
auto eth0
iface ethO inet static
address 192.168.1.2
netmask 255.255.255.0
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Mallory:

1.

2.
3.

Download Ubuntu Desktop 11.10 32-bit iso
a. http://www.ubuntu.com/download /ubuntu/download

Burn the ISO file to a CD and boot with the CD to install Ubuntu 11.10.

Install Ubuntu 11.10
a. Select Download updates while installing.
b. Do not install third party applications.
Open the Update Manager
a. Install all important security updates.
b. Do not update to a newer version of Ubuntu if available.
c. Restart the computer.
Open the Ubuntu Software center
a. Search for and install Synaptic Package Manager
Open the Synaptic Package Manager and install the following packages:
a. python-scapy 2.1.0
b. python-psyco 1.6
c. spe 0.84 (Stani’s Python Editor)
Open Terminal
a. sudo nautilus

b. Open /etc/network/interfaces with gedit. Add the following lines:

auto eth0

iface ethO inet static
address 192.168.1.4
netmask 255.255.255.0

93

www.manharaa.com



Bob:

I. BUILDING OVERO OPEN EMBEDDED IMAGE
Guide: http://gumstix.org/software-development /open-embedded /61-using-the-open-embedded-

build-system.html
1) Build a new virtual machine with the Ubuntu 10.10 x86 ISO file to act as the
development laptop.
a. http://releases.ubuntu.com/10.10/ubuntu-10.10-desktop-i386.iso
2) Once booted, use the Update Manager to update the default packages. Do not upgrade

to Ubuntu 11.04 or other versions.

3) Open the synaptic package manager and select the following packages for install:
a. git

subversion

gce

build-essential

help2man

diffstat

texi2html

texinfo

PR ome a0 T

libncurses5-dev

—

Cvs
gawk
python2.7-dev

. python-pysqlite2
unzip
chrpath
ccache

LT o g TR

python-psyco
4) sudo dpkg-reconfigure dash
a. Answer No when asked whether you want to install dash as /bin/sh.

5) mkdir -p ~/overo-oe
6) cd ~/overo-oe

7) git clone git://gitorious.org/gumstix-oe/mainline.git org.openembedded.dev
8) cd org.openembedded.dev
9) git checkout --track -b overo-2011.03 origin/overo-2011.03

10) cd ~/overo-oe

11) git clone git://git.openembedded.org/bitbake bitbake
12) cd bitbake

13) git checkout 1.12.0
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14) c¢d ~/overo-oe

15) cp -r org.openembedded.dev/contrib/gumstix/build .

16) cp ~/.bashrc ~/bashrc.bak

17) cat ~ /overo-oe/build/profile >> ~/.bashrc

18) Close the Terminal window and open a new one.

19) bitbake omap3-console-image

20) The Overo file system is built at: ~/overo-oe/tmp/deploy/glibc/images/overo/omap3-
console-image-overo.tar.bz2

21) The Overo OE Linux Kernel is built at: ~/overo-
oe/tmp/deploy/glibc/images/overo/ulmage-overo.bin

II. RECONFIGURING THE OVERO KERNEL TO INCLUDE IPSEC
SUPPORT
Guide: http://www.ipsec-howto.org/x299.html

1) On the development laptop:

\]

) cd ~/overo-oe
) mkdir -p ./user.collection /recipes
)

=~ W

cp -r ./org.openembedded.dev/recipes/linux /home/jhagen/overo-
oe/user.collection /recipes
a. (bitbake looks at user.collection first. org.embedded.dev hold the original copy)
5) cd T /overo-oe/tmp/work/overo-angstrom-linux-gnueabi/linux-omap3<kernel
version> /git
6) make menuconfig ARCH=arm
a. Networking
i. Network options
1. [*] IP: AH Transformation
2. [*] IP: ESP Transformation
3. [*] IP: IPsec transport mode
b. Cryptographic API
i. [*] Null algorithms
| HMAC support
iii. [*] MD5 digest algorithm

i
|
|
iv. [*] SHA1 digest algorithm
|
|

i [*
*

v. [*] AES cipher algorithm

vi. [*] DES and Triple DES EDE algorithms
c. Exit
d. Save: Yes

7) ls—al
a. Check that date was made today
8) less .config
a. Scroll to #Networking options and confirm:
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i. CONFIG INET AH=—y
ii. CONFIG INET ESP—y
9) c¢p ./.config ~/overo-oe/user.collection /recipes/linux/linux-omap3/overo/defconfig
10)
11) bitbake —c clean linux-omap3
12) bitbake —c build linux-omap3
13) The Overo OE Linux Kernel is built at: ~/overo-
oe/tmp/deploy/glibc/images/overo/ulmage-overo.bin

cd T /overo

III. PARTITIONING BOOTABLE SD CARD FOR OVERO IMAGE

Guide: http://gumstix.org/create-a-bootable-microsd-card.html

Guide: http://gumstix.org/how-to/70-writing-images-to-flash.html

IV. DEPLOYING OVERO IMAGE

1) On the development laptop:

2) Delete the current file structure, if any, on the EXT3 partition of the micro SD card
a. sudo nautilus
b. Edit > Preferences > Behavior > Check Include a Delete command that

bypasses Trash

c. Select rootfs
d. Select all files > Right Click > Delete

3) Copy the contents of ~/overo-oe/tmp/deploy/glibc/images/overo/omap3-console-image-

overo.tar.bz2 into the rootfs partition of the micro SD card.

4) On the micro SD card FAT partition:
a. Delete ulmage
b. Copy ulmage-<kernel version>-overo.bin into /
c. Rename ulmage-<kernel version>-overo.bin to ulmage

V. BOOTING OVERO IMAGE CONSOLE
1) Power off the Overo board.
2) Insert the newly created micro SD card into the micro SD slot of the Overo board.
3) Connect a USB cable between the “Console” mini USB B port on the Overo board and
the development laptop with ckermit installed.
4) On the development laptop create a file called overo serial.cfg
set line /dev/ttyUSBO(Note: 0 might changed)
set flow-control none

set carrier-watch off
set speed 115200
set reliable
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fast
set prefixing all
set file type bin
set rec pack 4096
set send pack 4096
set window 5
connect
5) Open a terminal and type:
a. kermit
i. take overo_serial.cfg
6) Power on the Overo board. You should see the boot sequence displayed on the terminal.
It will finish with a prompt to login.
7) Enter “root” as the username to log in.
8) To exit kermit:
a. ctrl-/-c
b. Type: exit

VI. COMPILING EXTRA PACKAGES FOR OVERO IMAGE
1) After the first console image has been built, the environment is set up to build extra
packages.
2) On the development laptop:
a. bitbake <package name>
3) Packages will be built in: /overo-oe/tmp/deploy/glibc/ipk/armv7a
4) Copy the packages onto the Overo EXT3 partition
a. sudo scp ./<package name>.ipk <overo IP address>:/home/root
5) On the Overo console, install the package
a. opkg install ./<package name>

VII. SET STATIC IP ADDRESS

1) Edit /etc/network/interfaces. Add the following lines:
auto eth0
iface ethO inet static
address 192.168.1.3
netmask 255.255.255.0
gateway 192.168.1.1

2) Note: A default gateway is added because one attack used against Bob relies on him
thinking he can route traffic to IP addresses outside his subnet.

VIII. COMPILING PLAYER FOR OVERO IMAGE
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Guide:
http://playerstage.sourceforge.net /wiki/Cross Compile Player with Openembedded and Bi
tBake

1) On the development laptop:

2) Create the following folder: /overo-oe/org.openembedded.dev/recipes/player

3) Save the following as /overo-oe/org.openembedded.dev /recipes/player/player.bb
(Modified from the Guide)

DESCRIPTION = "Cross-platform robot device interface and server"
LICENSE = "GPLv2+ and LGPLv2+"

HOMEPAGE = "http://playerstage.sourceforge.net"

DEPENDS = "libtool"

PN = "player"
PV = 3.0.2
PR = "r0"

SRC_URI = "http://iweb.dl.sourceforge.net/project/playerstage/Player/${PV}/player-${ PV} .tar.gz"
SRC_URI|md5sum| = "b92bbea028e¢6bic49351849f420167dh"
S="${WORKDIR}/player-${PV}"

inherit pkgconfig

do_configure () {
cmake -DCMAKE INSTALL PREFIX=/usr -DBUILD EXAMPLES=OFF -DBUILD DOCUMENTATION=OFF -
DBUILD EXAMPLES=OFF -DBUILD PLAYERCC=OFF -DBUILD PLAYERCC BOOST=OFF\
-DBUILD PYTHONC BINDINGS=OFF -DBUILD SHARED LIBS—=OFF -DBUILD UTILS=OFF -
DBUILD UTILS LOGSPLITTER=OFF -DBUILD UTILS PLAYERCAM=OFF \
-DBUILD UTILS PLAYERJOY=OFF -DBUILD UTILS PLAYERNAV-=OFF -DBUILD UTILS PLAYERPRINT-=OFF
-DBUILD UTILS PLAYERPROP=OFF -DBUILD UTILS PLAYERV=OFF \
-DBUILD UTILS PLAYERVCR-OFF -DBUILD UTILS PLAYERWRITEMAP-OFF -DBUILD UTILS PMAP-OFF -
DBUILD UTILS XMMS=OFF -DENABLE DRIVER ACCEL CALIB=OFF \
-DENABLE DRIVER ACRI120U=OFF -DENABLE DRIVER ACTS=OFF -DENABLE DRIVER AIOTOSONAR—-OFF
-DENABLE DRIVER_ ALSA=OFF -DENABLE DRIVER AMCL=OFF \
-DENABLE DRIVER AMTECM5=OFF -DENABLE DRIVER AMTECPOWERCUBE=OFF -
DENABLE DRIVER AODV-=OFF -DENABLE DRIVER ARTOOLKITPLUS=OFF -
DENABLE DRIVER BLOBTODIO=OFF \
-DENABLE DRIVER BLOBTRACKER-OFF -DENABLE DRIVER BUMPER2LASER~-OFF -
DENABLE DRIVER BUMPERSAFE=OFF -DENABLE DRIVER BUMPERTODIO=OFF -
DENABLE DRIVER CAMERA1394—OFF \
-DENABLE DRIVER CAMERACOMPRESS=OFF -DENABLE DRIVER CAMERAUNCOMPRESS—=OFF -
DENABLE DRIVER CAMERAUVC-=OFF -DENABLE DRIVER CAMERAV4L-OFF -
DENABLE DRIVER CAMERAVA4L2-OFF \
-DENABLE_DRIVER CAMFILTEROFF -DENABLE DRIVER CANONVCC4-—OFF -
DENABLE DRIVER CLODBUSTER-OFF -DENABLE DRIVER CMDSPLITTER-OFF -
DENABLE DRIVER CMUCAM2-OFF \
-DENABLE DRIVER CMVISION=OFF -DENABLE DRIVER CREATE-ON -DENABLE DRIVER CVCAM-=OFF -
DENABLE DRIVER DEADSTOP-OFF -DENABLE DRIVER DIOCMD=OFF -
DENABLE DRIVER DIODELAY=OFF \
-DENABLE DRIVER DIOLATCH=OFF -DENABLE DRIVER DUMMY-OFF -
DENABLE DRIVER EEDHCONTROLLER=OFF -DENABLE DRIVER EPUCK-=OFF -
DENABLE DRIVER ERI1=OFF -DENABLE DRIVER ERRATIC=OFF \
-DENABLE DRIVER FAKELOCALIZE—=OFF -DENABLE DRIVER FESTIVAL-=OFF -
DENABLE DRIVER FLEXIPORT=OFF -DENABLE DRIVER FLOCKOFBIRDS=OFF -
DENABLE DRIVER GARCIA—OFF \
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-DENABLE _DRIVER_GARMINNMEA - OFF -DENABLE DRIVER GBXGARMINACFR-OFF -

DENABLE DRIVER GBXSICKACFR-OFF -DENABLE DRIVER SCENARIOIZE-OFF -

DENABLE DRIVER GOTO-OFF \

-DENABLE_DRIVER_GRIDMAP-OFF -DENABLE DRIVER GRIPCMD-OFF -

DENABLE DRIVER HOKUYO AIST-OFF -DENABLE DRIVER IMAGESEQ-OFF -
DENABLE DRIVER INHIBITOR-OFF \

-DENABLE_DRIVER_INSIDEM300-OFF -DENABLE DRIVER ISENSE-OFF -DENABLE DRIVER IWSPY-OFF -
DENABLE DRIVER KARTOWRITER-OFF -DENABLE DRIVER KHEPERA-OFF \
-DENABLE DRIVER LASERBAR-OFF -DENABLE DRIVER LASERBARCODE-OFF -

DENABLE DRIVER LASERCSPACE-OFF -DENABLE DRIVER LASERCUTTER-OFF -

DENABLE DRIVER LASERPOSEINTERPOLATOR-OFF \

-DENABLE DRIVER_LASERPTZCLOUD-OFF -DENABLE DRIVER LASERRESCAN-OFF -
DENABLE DRIVER LASERSAFE-OFF -DENABLE DRIVER LASERTORANGER-OFF -

DENABLE DRIVER LASERVISUALBARCODE-OFF \

-DENABLE DRIVER LASERVISUALBW-OFF -DENABLE DRIVER LINUXJOYSTICKOFF -
DENABLE DRIVER LINUXWIFI-OFF -DENABLE DRIVER LOCALBB-OFF -
DENABLE DRIVER MAPCSPACE-OFF \

-DENABLE DRIVER MAPFILE-OFF -DENABLE DRIVER MAPSCALE-OFF -DENABLE DRIVER MBICP—OFF -
DENABLE DRIVER MICA2-OFF -DENABLE DRIVER MICROSTRAIN-OFF -

DENABLE DRIVER MOTIONMIND-—OFF \

-DENABLE DRIVER_ MRICP-OFF -DENABLE DRIVER ND-OFF -DENABLE DRIVER NIMU-OFF -
DENABLE DRIVER NOMAD-OFF -DENABLE DRIVER OBOT-OFF -

DENABLE DRIVER OCEANSERVER-OFF \

-DENABLE_DRIVER_P20S—OFF -DENABLE DRIVER PASSTHROUGH-OFF -
DENABLE DRIVER PBSLASER-OFF -DENABLE DRIVER_PHIDGETACC—OFF -

DENABLE DRIVER PHIDGETIFK-OFF \

-DENABLE_DRIVER PHIDGETRFID—OFF -DENABLE DRIVER PORTIO—OFF -

DENABLE DRIVER POSTGIS—OFF -DENABLE DRIVER PTU46—OFF -

DENABLE DRIVER RANCERPOSEINTERPOLATOR-OFF \

-DENABLE_DRIVER RANGERTODIO-OFF -DENABLE_DRIVER RANGERTOLASER-OFF -
DENABLE DRIVER RCORE_XBRIDGE-OFF -DENABLE DRIVER READLOG-—OFF -

DENABLE DRIVER REB-OFF \

-DENABLE_DRIVER RELAY-OFF -DENABLE DRIVER RFLEX—OFF -DENABLE DRIVER ROBOTEQ-OFF -
DENABLE DRIVER ROBOTINO—OFF -DENABLE DRIVER ROBOTRACKER—OFF \
-DENABLE_DRIVER_ROOMBA-OFF -DENABLE_DRIVER_RS4LEUZE-OFF -DENABLE_DRIVER_RT3XXX-OFF
-DENABLE_DRIVER_SECWAYRMP—OFF -DENABLE_DRIVER_SEGWAYRMP400-OFF
-DENABLE_DRIVER_SERIALSTREAM-OFF -DENABLE_DRIVER_SERIO-OFF -
DENABLE_DRIVER_SERVICE_ADV_MDNS-OFF -DENABLE_DRIVER_SHAPETRACKER-OFF -
DENABLE_DRIVER_SICKLDMRS—OFF \

-DENABLE_DRIVER_SICKLMS200—OFF -DENABLE_DRIVER_SICKLMS400—OFF -
DENABLE_DRIVER_SICKNAV200-OFF -DENABLE_DRIVER _SICKRFI341-OFF -
DENABLE_DRIVER_SICKS3000—OFF \

-DENABLE_DRIVER_SIMPLESHAPE-OFF -DENABLE_DRIVER_SKYETEKMI-OFF -

DENABLE DRIVER_SND-OFF -DENABLE_DRIVER SONARTORANGER-OFF -
DENABLE_DRIVER_SONYEVID30-OFF \

-DENABLE_DRIVER_SPHERE-OFF -DENABLE DRIVER SPHEREPTZ- OFF -

DENABLE DRIVER_SPHINX2-OFF -DENABLE_DRIVER_SR3000-OFF -DENABLE_DRIVER STALLTODIO-OFF
-DENABLE_DRIVER_STATGRAB-OFF \

-DENABLE_DRIVER_STOC-OFF -DENABLE_DRIVER_SUPPRESSOR-OFF -

DENABLE DRIVER SWISSRANGER-OFF -DENABLE _DRIVER TCPSTREAM-OFF -

DENABLE DRIVER UNICAPIMAGE-OFF \

-DENABLE_DRIVER_UPCBARCODE-OFF -DENABLE_DRIVER VEC2MAP-OFF -
DENABLE DRIVER VELCMD-OFF -DENABLE DRIVER VFH-OFF -DENABLE DRIVER VIDEOCANNY-OFF \
-DENABLE_DRIVER_VMAPFILE-OFF -DENABLE_DRIVER WAVEFRONT-OFF -
DENABLE DRIVER WBR914-OFF -DENABLE _DRIVER WRITELOG-OFF -DENABLE DRIVER_XSENSMT-OFF
\

-DENABLE_DRIVER_YARPIMAGE-OFF -DENABLE DRIVER SPEECHCMD-OFF -

DENABLE DRIVER CAMERAGST-OFF .
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do_compile() {
oe_runmake

}

do_install() {

oe_runmake install DESTDIR=${D}

}

FILES_${PN} = "/usr/bin/player \
/usr/bin/playerinterfacegen \
/usr/bin/playerxdrgen \
Jusr/include/* \

Jusr/lib/* \
/usr/share/*"

4) bitbake player
5) Copy the following packages from ~ /overo-oe/tmp/deploy/glibc/ipk/armv7a to the
Overo file system:
a. libstde++46_4.3.3-r25.2.6 _armv7a.ipk
b. libxml2 2.7.8-1r9.1.6 armv7a.ipk
c. libjpeg8 8b-rl.6 armvT7a.ipk
d. player 3.0.2-r0.6 _armv7a.ipk
6) Create a file called overo create.cfg and copy it the Overo file system:
driver
(
name "create"
provides |"position2d:0" "power:0" "bumper:0" "ir:0" "opaque:0"|
port "/dev/ttyO0"
safe 0
)
7) On the Overo console for each of the three packages above type:
a. opkg install ./<package name>
8) To run player server:
a. player overo create.cfg

IX. DATALOGGING CPU USAGE USING SYSSTAT

sar Man page: http://linux.die.net/man/1/sar

1) Install the sysstat 9.0.6 (see COMPILING EXTRA PACKAGES FOR OVERO IMAGE)
2) To print CPU utilization every 1 second. Up to 90 lines are displayed.

a. sar —u 1 80
3) To redirect this and save the output into a text file in the current directory
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a. sar -u 1 80 > cpu.tsv

X. CREATE SECURITY ASSOCIATIONS WITH IPSEC-TOOLS

Guide: https://help.ubuntu.com/community/IPSecHowTo

http://www.ipsec-howto.org/x299.html

1) Install the ipsec-tools 0.7.2(see COMPILING EXTRA PACKAGES FOR OVERO
IMAGE)

2) To generate pseudo-random pre-shared keys for security associations:

a. For SHA-256 and AES 256-bit keys:

i. dd if=/dev/random count=32 bs=1| xxd —ps

3) Edit /etc/ipsec-tools.conf, to add/remove security associations
4) To apply changes

a. sudo setkey —f /etc/ipsec-tools.conf
5) To view active security associations

a. sudo setkey —D

6) To view active security policies
a. sudo setkey —DP
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Appendix D: Wiring diagram of Power Monitor

il @ e 6 86 o 06 6 06 060 0 s e |3
14 e s 8 0 0 0 0 0 00 0 0 25

DB-25P (Male Plug Front View)

3] e e ® o 86 8 o 0 0 0 0 0 0 |1
25 e 6 6 0 0 0 0 0 0 0 0 e |2

DB-255 (Female Sacket Front View)

WEERIIRED DB-25 Fem DB-25 Male cutine
- : Ext Power|
Serial + (1)—{(1) Serial +
+(1;4\(; :agery * Serial - (2)—|(2) Serial - ;5\(/1 i ;5\(/‘
0 e Battery + (10)|  |(10) +15V e o nd] Eps05100
MTR72DAUL-1250A Battery — Charge Battery — (25)—|(25) Gnd 10w Regulated
AC to DC Converter y AC to DC Converter
14vDC @ 5A iRobot Create 4400 Gumstix Overo Earth 5VDC @ 1A
|
4~ (1) GND BB P0.0 (17)
USB
L+ __1(2) AIO (AIO+) P0.1 (18)
+/- 10V Diff{Mod

Cower Moni TN @) A4 (Al0Y) P0.2 (19)
ower Monitor (4) GND P0.3 (20)
D_eII Latitude E6510. ) (5) All (Al1+) P0.4 (21)
Windows 7 SP1 64-b|t‘ +- 1V Diff Mode | ) A5 (Al 1-) N PO.5 (22)
NI LabVIEW 9.0.1 32-bit (7) GND USRI B P0.6 (23)
®) Al2 a Q P0.7 (24)
9) Al6 P1.0 (25)
(10) GND P1.1 (26)
(11) AI 3 P1.2 (27)
Note: Per the NI USB-6008 User a2 A7 P13 (28)
. (13) GND PFI 0 (29)
Guide, no Al channel can have (14)AO 0 +25V (30)

+ i it. :
more than +10V applied to it (15)A0 1 +5v (31)
Al Input Impedence: 144kQ (16) GND GND (32)
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Appendix E: LabVIEW Virtual Instrument for Power Monitor

Tab Control  LYoltage Measuring Analog Input Task
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’ Errorin

b name to assign

56 Devl/ai0 |+
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physical channe

1

maximum value

Capture Duration
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' units Supply Current F name to assign
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Appendix F: Data Tables

Factor Levels: Defense=None; Exploit=Passive Sniffing

Exploit Outcome Average CPU Usage|Average Power |Packets |[Network Load [Network Load
Replication |(Successes=1; Failure=0) |(%) (W) (packets) |(Bytes) (Kbps)
1 1 3.462 2.114 3784 355726 35.5726
2 1 3.310 2.145 3790 356260 35.626
3 1 3.028 2.150 3773 354720 35.472
4 1 3.267 2.145 3781 355478 35.5478
5 1 3.256 2.147 3820 359080 35.908

Factor Levels: Defense=None;

Exploit=ARP Cache Poisoning

Exploit Outcome Average CPU Usage|Average Power [Packets [Network Load [Network Load
Replication |(Successes=1; Failure=0) |(%) (W) (packets) |(Bytes) (Kbps)
1 1 3.824 2.146 7469 705026 70.5026
2 1 3.757) 2.152 7438 701740 70.174
3 1 3.205 2.144 7470 705092 70.5092
4 1 3.116 2.151 7406 699228 69.9228
5 1 5.055 2.122 7473 705622 70.5622

Factor Levels: Defense=None; Exploit=TCP Connection Hijacking

Exploit Outcome Average CPU Usage|Average Power |Packets [Network Load [Network Load
Replication |(Successes=1; Failure=0) (%) (W) (packets) |(Bytes) (Kbps)
1 1 96.296 2.319 1361730 89874756 8987.4756
2 0 94.741 2.350, 1369435 90383510 9038.351
3 1 97.007, 2.323 1348911 89028798 8902.8798
4 1 94.829 2.350, 1389899 91734298 9173.4298
5 1 95.408 2.321] 1362125 89900814 8990.0814

Factor Levels: Defense=None; Exploit=TCP Reset

Exploit Outcome Average CPU Usage|Average Power |[Packets [Network Load [Network Load
Replication |(Successes=1; Failure=0) |(%) (W) (packets) |(Bytes) (Kbps)
1 1 3.039 2.123 17] 1402 0.1402
2 1 2.965 2.149 15 1190 0.119
3 1 3.132 2.157] 25 2130 0.213
4 1 2.680 2.153 15 1190 0.119
5 1 2.711 2.158 15 1190 0.119
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Factor Levels: Defense=None; Exploit=TCP Connection Flooding

Exploit Outcome Average CPU UsagelAverage Power [Packets [Network Load [Network Load
Replication |(Successes=1; Failure=0) |(%) (W) (packets) |(Bytes) (Kbps)
1 1 41.420, 2.228 13702 1057564 105.7564
2 1 39.499 2.206 13195 1027288 102.7288
3 1 40.406 2.234 13566 1047996 104.7996
4 1 40.471 2.233 13242 1028818 102.8818
5 1 38.990 2.211 13369 1038380 103.838

Factor Levels: Defense=IPsec AH; Exploit=Passive Sniffing

Exploit Outcome Average CPU Usage|Average Power [Packets [Network Load [Network Load
Replication |(Successes=1; Failure=0) |(%) (W) (packets) |(Bytes) (Kbps)
1 1 3.541 2.140 3800 448400 44.84
2 1 3.511 2.148 3791 447402 44.7402
3 1 3.201 2.151 3820 450760 45.076
4 1 3.580 2.149 3781 446130 44.613
5 1 3.145 2.120 3805 448955 44.8955

Factor Levels: Defense=IPsec AH; Exploit=ARP Cache Poisoning

Exploit Outcome Average CPU Usage|Average Power |Packets [Network Load [Network Load
Replication |(Successes=1; Failure=0) (%) (W) (packets) |(Bytes) (Kbps)
1 0 3.961 2.154 48 4832 0.4832
2 0 2.794 2.123 44 4592 0.4592
3 0 2.765 2.157 52 5072 0.5072
4 0 2.805 2.151 50 4952 0.4952
5 0 3.150 2.155 52 5072 0.5072

Factor Levels:

Defense=IPsec AH;

Exploit=TCP Connection Hijacking

Exploit Outcome Average CPU Usage|Average Power |Packets [Network Load [Network Load
Replication |(Successes=1; Failure=0) |(%) (W) (packets) |(Bytes) (Kbps)
1 0 3.532 2.145 5487 626951 62.6951
2 0 3.537 2.150, 7588 849844 84.9844
3 0 3.702 2.116 7612 852648 85.2648
4 0 3.358 2.145 7583 849222 84.9222
5 0 3.375 2.147 7558 846684 84.6684
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Factor Levels: Defense=IPsec AH; Exploit=TCP Reset

Exploit Outcome Average CPU UsagelAverage Power [Packets [Network Load [Network Load
Replication |(Successes=1; Failure=0) |(%) (W) (packets) |(Bytes) (Kbps)
1 0 3.296 2.145 8233 792986 79.2986
2 0 3.365 2.145 8275 797062 79.7062
3 0 3.269 2.145 8186 788508 78.8508
4 0 3.355 2.113 8212 790936 79.0936
5 0 3.343 2.143 8240, 793696 79.3696

Factor Levels:

Defense=IPsec AH;

Exploit=TCP Connection Flooding

Exploit Outcome Average CPU Usage|Average Power [Packets [Network Load [Network Load
Replication |(Successes=1; Failure=0) |(%) (W) (packets) |(Bytes) (Kbps)
1 0 3.571 2.119 10338 839900 83.99
2 0 3.447) 2.147] 10394 843660 84.366
3 0 3.422 2.147) 10355 841350 84.135
4 0 3.584 2.150 10322 839170 83.917
5 0 3.755 2.118 10333 838762 83.8762

Factor Levels: Defense=IPsec ESP; Exploit=Passive Sniffing

Exploit Outcome Average CPU Usage|Average Power |Packets [Network Load [Network Load
Replication |(Successes=1; Failure=0) (%) (W) (packets) |(Bytes) (Kbps)
1 0 3.552 2.161 3782 491692 49.1692
2 0 3.939 2.164 3770, 490100 49.01
3 0 3.226 2.167 3785 491994 49.1994
4 0 3.153 2.165 3800 494000 49.4
5 0 3.197 2.138 3815 495622 49.5622

Factor Levels: Defense=IPsec ESP; Exploit=ARP Cache Poisoning

Exploit Outcome Average CPU Usage|Average Power |Packets [Network Load [Network Load
Replication |(Successes=1; Failure=0) |(%) (W) (packets) |(Bytes) (Kbps)
1 0 5.754 2.166 7580 983168 98.3168
2 0 5.393 2.167 7671 995126 99.5126
3 0 3.664 2.169 7557 980618 98.0618
4 0 4.024 2.134 7599 986190 98.619
5 0 3.865 2171 7591 985054 98.5054
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Factor Levels: Defense=IPsec ESP; Exploit=TCP Connection Hijacking

Exploit Outcome Average CPU UsagelAverage Power [Packets [Network Load [Network Load
Replication |(Successes=1; Failure=0) |(%) (W) (packets) |(Bytes) (Kbps)
1 0 3.271 2.169 3801 494186 49.4186
2 0 3.221 2.170 3778 491020 49.102
3 0 3.447 2.137] 3790 492700 49.27
4 0 3.068 2.142 3820 496600 49.66
5 0 3.068 2.138 3767 489718 48.9718
Factor Levels: Defense=IPsec ESP; Exploit=TCP Reset
Exploit Outcome Average CPU Usage|Average Power [Packets [Network Load [Network Load
Replication |(Successes=1; Failure=0) |(%) (W) (packets) |(Bytes) (Kbps)
1 0 3.688 2.139 3791 492886 49.2886
2 0 3.248 2.136 3792 492992 49.2992
3 0 3.187 2.138 3777 491018 49.1018
4 0 3.316 2.140 3771 490286 49.0286
5 0 4.143 2.139 3772 490392 49.0392

Factor Levels: Defense=IPsec ESP; Exploit=TCP Connection Flooding

Exploit Outcome Average CPU Usage|Average Power |Packets [Network Load [Network Load
Replication |(Successes=1; Failure=0) (%) (W) (packets) |(Bytes) (Kbps)
1 0 3.994 2.140 10838 916980 91.698
2 0 3.562 2.138 10633 901180 90.118
3 0 3.732 2.135 10704 908646 90.8646
4 0 4.843 2.168 10693 908234 90.8234
5 0 3.700 2.165 10691 905654 90.5654

Factor Levels: Defense=IPsec AH+ESP; Exploit=Passive Sniffing

Exploit Outcome Average CPU Usage|Average Power |Packets [Network Load [Network Load
Replication |(Successes=1; Failure=0) |(%) (W) (packets) |(Bytes) (Kbps)
1 0 3.670) 2.152 3798 584692 58.4692
2 0 3.923 2.124 3802 585540 58.554
3 0 3.935 2.154 3777 581666 58.1666
4 0 3.684 2.156 3801 585410 58.541
5 0 3.701 2.153 3806 586156 58.6156
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Factor Levels: Defense=IPsec AH+ESP; Exploit=ARP Cache Poisoning

Exploit Outcome Average CPU UsagelAverage Power [Packets [Network Load [Network Load
Replication |(Successes=1; Failure=0) |(%) (W) (packets) |(Bytes) (Kbps)
1 0 3.874 2.123 7544 1159768 115.9768
2 0 4.138 2.152 7613 1170188 117.0188
3 0 3.937 2.153 7584 1165800 116.58
4 0 4.087 2.127 7588 1166160 116.616
5 0 4.28(0) 2.125 7569 1163418 116.3418
Factor Levels: Defense=IPsec AH+ESP; Exploit=TCP Connection Hijacking

Exploit Outcome Average CPU Usage|Average Power [Packets [Network Load [Network Load
Replication |(Successes=1; Failure=0) |(%) (W) (packets) |(Bytes) (Kbps)
1 0 4.135 2.155 3811 586950 58.695
2 0 4.132 2.149 3761 579170 57.917
3 0 4.132 2.150 3801 585410 58.541
4 0 3.860 2.151 3801 585410 58.541
5 0 3.972 2.151 3791 583870 58.387
Factor Levels: Defense=1Psec AH+ESP; Exploit=TCP Reset
Exploit Outcome Average CPU Usage|Average Power |Packets [Network Load [Network Load
Replication |(Successes=1; Failure=0) (%) (W) (packets) |(Bytes) (Kbps)
1 0 3.732 2.119 3781 582330 58.233
2 0 4.311 2.149 3771 580790 58.079
3 0 3.756 2.153 3762 579380 57.938
4 0 3.630) 2.153 3796 584584 58.4584
5 0 3.878 2.147 3786 583044 58.3044

Factor Levels: Defense=IPsec AH+ESP; Exploit=TCP Connection Flooding

Exploit Outcome Average CPU Usage|Average Power |Packets [Network Load [Network Load
Replication |(Successes=1; Failure=0) |(%) (W) (packets) |(Bytes) (Kbps)
1 0 4.143 2.127 10241 969539 96.9539
2 0 4.172 2.149 10409 980870 98.087
3 0 5.253 2.120, 10215 967694 96.7694
4 0 3.952 2.152 10461 985456 98.5456
5 0 4.099 2.123 10294 972960 97.296
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